2.平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,$\overrightarrow a=(2,0)$,$|\overrightarrow b|=1$,則$|\overrightarrow a+2\overrightarrow b|$=( 。
A.1B.2C.$2\sqrt{3}$D.4

分析 利用兩個(gè)向量的數(shù)量積的定義求出$\overrightarrow{a}•\overrightarrow$ 的值,再平方即可求出答案.

解答 解:∵平面向量$\overrightarrow a$與$\overrightarrow b$的夾角為$\frac{2π}{3}$,$\overrightarrow a=(2,0)$,$|\overrightarrow b|=1$,
∴|$\overrightarrow{a}$|=2,
∴$\overrightarrow{a}•\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cos<$\overrightarrow{a}$,$\overrightarrow$>=2×1×$(-\frac{1}{2})$=-1,
∴$|\overrightarrow a+2\overrightarrow b|$2=|$\overrightarrow{a}$|2+4$\overrightarrow{a}•\overrightarrow$+4||$\overrightarrow$|2=4-4+4=4,
∴$|\overrightarrow a+2\overrightarrow b|$=2,
故選:B.

點(diǎn)評(píng) 本題考查兩個(gè)向量的數(shù)量積的定義,向量的模的求法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)y=x+1+lnx在點(diǎn)A(1,2)處的切線l,若l與二次函數(shù)y=ax2+(a+2)x+1的圖象也相切,則實(shí)數(shù)a的取值為( 。
A.12B.8C.0D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)函數(shù)f(x)在R上的導(dǎo)函數(shù)為f′(x),對(duì)?x∈R有f(x)+f(-x)=x2,在(0,+∞)上f′(x)-x<0,若f(4-m)-f(m)≥8-4m,則實(shí)數(shù)m的取值范圍是(  )
A.[2,+∞)B.(-∞,2]C.(-∞,2]∪[2,+∞)D.[-2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2|x+1|+|x-2|的最小值為m.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證:$\frac{^{2}}{a}$+$\frac{{c}^{2}}$+$\frac{{a}^{2}}{c}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+4≥0\\ x-3y-6≤0\\ 2x+3y-12≤0\end{array}\right.$則z=x+2y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.Sn為數(shù)列{an}的前n項(xiàng)和,已知Sn+1=λSn+1(λ是大于0的常數(shù)),且a1=1,a3=4.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=nan,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{lnx}{x+1}$.
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)t<0時(shí),對(duì)x>0且x≠1,均有f(x)-$\frac{t}{x}$>$\frac{lnx}{x-1}$成立.求實(shí)數(shù)t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知P為矩形ABCD所在平面內(nèi)一點(diǎn),AB=4,AD=3,$PA=\sqrt{5}$,$PC=2\sqrt{5}$,則$\overrightarrow{PB}•\overrightarrow{PD}$=( 。
A.-5B.-5或0C.0D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在區(qū)間[0,π]上隨機(jī)取一個(gè)x,則y=sinx的值在0到$\frac{1}{2}$之間的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{π}$

查看答案和解析>>

同步練習(xí)冊(cè)答案