Loading [MathJax]/jax/output/CommonHTML/jax.js
10.已知函數(shù)f(x)=2|x+1|+|x-2|的最小值為m.
(Ⅰ)求實數(shù)m的值;
(Ⅱ)若a,b,c均為正實數(shù),且滿足a+b+c=m,求證:2a+\frac{{c}^{2}}+a2c≥3.

分析 (Ⅰ)分類討論,即可求實數(shù)m的值;
(Ⅱ)a+b+c=3,由柯西不等式可得(a+b+c)(2a+c2+a2c)≥(a+b+c)2,即可證明結(jié)論.

解答 (Ⅰ)解:x≤-1,f(x)=-2x-2-x+2=-3x≥3,
-1<x<2,f(x)=2x+2-x+2=x+4∈(3,6),
x≥2,f(x)=2x+2+x-2=3x≥6,
∴m=3;
(Ⅱ)證明:a+b+c=3,由柯西不等式可得(a+b+c)(2a+c2+a2c)≥(a+b+c)2,
2a+\frac{{c}^{2}}+a2c≥3.

點評 本題考查絕對值不等式,考查柯西不等式的運用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=mln(x+1),g(x)=xx+1(x>-1).
(Ⅰ)討論函數(shù)F(x)=f(x)-g(x)在(-1,+∞)上的單調(diào)性;
(Ⅱ)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合M={-1,0,1},N={y|y=1-cosπ2x,x∈M},則集合M∩N的真子集的個數(shù)是( �。�
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知a=π2π2cosxdx,則二項式x+ax6展開式中的常數(shù)項是240.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知拋物線C:y2=2px(p>0)的焦點為F,點M(x0,22)(x0p2)是拋物線C上一點,圓M與線段MF相交于點A,且被直線x=p2截得的弦長為3|MA|,若|MA||AF|=2,則|AF|等于( �。�
A.32B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知公差不為零的等差數(shù)列{an}滿足a6=14,且a1,a3,a7為等比數(shù)列{bn}的前三項.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設cn=an-bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.平面向量ab的夾角為2π3,a=20,|b|=1,則|a+2b|=( �。�
A.1B.2C.23D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.定義min{a,b}={aabbab,已知實數(shù)x,y滿足|x|≤2,|y|≤2,設z=min{x+y,2x-y},則z的取值范圍為[-6,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.(x-1xn的展開式中,所有二項式系數(shù)之和為512,則展開式中x3的系數(shù)為126(用數(shù)字作答).

查看答案和解析>>

同步練習冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹