解答:
解:如圖①中,A
1D⊥面ABC
1D
1,C
1P?面ABC
1D
1 ∴A
1D⊥C
1P 故①正確;
對(duì)于②若BD
1⊥平面PAC,幾何體是正方體,∴P在平面AB
1C中,則λ=
;②正確;
對(duì)于③,當(dāng)P為BD
1的中點(diǎn)時(shí),若△PAC為鈍角三角形,設(shè)正方體棱長(zhǎng)為a,PA=PC=
a,AC=
a,此時(shí)∠APC=120°,∴則λ∈(0,
),③不正確;
對(duì)于④,建立如圖所示的空間直角坐標(biāo)系,不妨設(shè)正方體的棱長(zhǎng)|AB|=1,則A(1,0,0),B(1,1,0),C(0,1,0),D(0,0,0),A
1(1,0,1),B
1(1,1,1),C
1(0,1,1),D
1(0,0,1),
∴
=(-1,-1,1),
=λ=(-λ,-λ,λ),
=
+=(λ,λ-1,-λ),
=+=(λ-1,λ,-λ)
顯然∠APC不是平角,所以∠APC為銳角等價(jià)于cos∠APC=cos<
,>=
>0,則等價(jià)于
•>0即,λ(λ-1)+(λ-1)λ+(-λ)(-λ)=λ(3λ-2)>0,
<λ<1,④不正確;
故答案為:①②.