1.已知等差數(shù)列{an}的前n項和為Sn,已知a2=3,S9=81.
(Ⅰ)求通項an;
(Ⅱ)記數(shù)列{$\frac{{S}_{n}}{n}$}的前n項和為Tn,數(shù)列{$\frac{1}{{T}_{n}}$}的前n項和為Un,求證:Un<2.

分析 (Ⅰ)利用等差數(shù)列的性質(zhì)與求和公式可求得其公差d與a2,從而可求得通項an;
(Ⅱ)由(Ⅰ)可求得Sn=$\frac{n{(a}_{1}{+a}_{n})}{2}$=n2,故$\frac{{S}_{n}}{n}$=n,繼而得其前n項和Tn,利用裂項法可求得數(shù)列{$\frac{1}{{T}_{n}}$}的前n項和為Un,從而可證Un<2.

解答 解:(Ⅰ)依題意,由等差數(shù)列的性質(zhì)可得,S9=9a5=81,故a5=9,----------(2分)
又a2=3,
∴d=$\frac{{a}_{5}{-a}_{2}}{5-2}$=2,----------------(3分)
所以an=a2+(n-2)d=2n-1;------------(5分)
(Ⅱ)證明:由an=2n-1得:Sn=$\frac{n{(a}_{1}{+a}_{n})}{2}$=n2,$\frac{{S}_{n}}{n}$=n,Tn=$\frac{n(n+1)}{2}$,-----------(8分)
$\frac{1}{{T}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$).---------(9分)
Un=2[(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$)]=2(1-$\frac{1}{n+1}$)<2.----------(12分)

點評 本題考查數(shù)列的求和,考查等差數(shù)列的通項公式與求和公式的應(yīng)用,突出裂項法求和的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知(3+x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,則a9=(  )
A.20B.21C.31D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示,四棱錐P-ABCD的底面為等腰梯形,AB∥DC,AB=2AD,若PA⊥平面ABCD,∠ABC=60°
(1)求證:平面PAC⊥平面PBC;
(2)若PA=AB,求平面PBC與平面PAD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≤1}\\{x≤y}\end{array}\right.$,則z=2x+y的最大值( 。
A.1B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.八個人排成一排.其中甲、乙、丙3人中有兩人相鄰.但這三人不同時相鄰的排法有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=4sinx•sin2($\frac{π}{4}$+$\frac{x}{2}$)+cos2x
(1)設(shè)w>0,且w為常數(shù),若函數(shù)y=f(wx)在區(qū)間[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函數(shù),求w的取值范圍;
(2)設(shè)集合A={x|$\frac{π}{6}$≤x≤$\frac{2π}{3}$},B={x||f(x)-m|<2},若A∪B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.化簡$\sqrt{1+2sin5cos5}+\sqrt{1-2sin5cos5}$,得到(  )
A.-2sin5B.-2cos5C.2sin5D.2cos5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在直角坐標(biāo)系xOy中,橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右焦點分別為F1,F(xiàn)2,左、右、上、下四個頂點分別為A,C,B,D,四邊形F1BF2D的面積與四邊形ABCD的面積的比值為$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓E的離心率;
(2)設(shè)橢圓E的焦距為$2\sqrt{2}$,直線l與橢圓E交于P,Q兩點,且OP⊥OQ,求證:直線l恒與一定圓相切,并求出該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個半徑為2的球體經(jīng)過切割后,剩余部分幾何體的三視圖如圖所示,則該幾何體的體積為8π.

查看答案和解析>>

同步練習(xí)冊答案