6.已知函數(shù)$f(x)=2sin(ωx+ϕ)+1,(ω>0,|ϕ|≤\frac{π}{2})$,其圖象與直線y=-1相鄰兩個交點的距離為π,若f(x)>1對任意$x∈(-\frac{π}{12},\frac{π}{3})$恒成立,則ϕ的取值范圍是( $\frac{π}{6}$,$\frac{π}{3}$).

分析 由題意可得當(dāng)x∈(-$\frac{π}{12}$,$\frac{π}{3}$)時,sin(2x+ϕ)>0,再利用正弦函數(shù)的圖象和性質(zhì),求得ϕ的取值范圍.

解答 解:∵函數(shù)$f(x)=2sin(ωx+ϕ)+1,(ω>0,|ϕ|≤\frac{π}{2})$,令f(x)=-1,可得sin(ωx+ϕ)=-1,
由于f(x)的圖象與直線y=-1相鄰兩個交點的距離為π,∴T=$\frac{2π}{ω}$=π,∴ω=2,f(x)=2sin(2x+ϕ)+1.
若f(x)>1對任意$x∈(-\frac{π}{12},\frac{π}{3})$恒成立,則當(dāng)x∈(-$\frac{π}{12}$,$\frac{π}{3}$)時,sin(2x+ϕ)>0,
∴2•(-$\frac{π}{12}$)+ϕ>2kπ,且2•$\frac{π}{3}$+ϕ<2kπ+π,k∈Z,即2kπ+$\frac{π}{3}$>ϕ>2kπ+$\frac{π}{6}$,∴ϕ∈( $\frac{π}{6}$,$\frac{π}{3}$).
故答案為:( $\frac{π}{6}$,$\frac{π}{3}$).

點評 本題主要考查正弦函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\vec a=(2,3),\vec b=(x,-6)$,若$2\vec a∥\vec b$,則x的值為(  )
A.9B.-9C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知n為正整數(shù),數(shù)列{an}滿足an>0,$4({n+1}){a_n}^2-n{a_{n+1}}^2=0$,設(shè)數(shù)列{bn}滿足${b_n}=\frac{{{a_n}^2}}{t^n}$
(1)求證:數(shù)列$\left\{{\frac{a_n}{{\sqrt{n}}}}\right\}$為等比數(shù)列;
(2)若數(shù)列{bn}是等差數(shù)列,求實數(shù)t的值;
(3)若數(shù)列{bn}是等差數(shù)列,前n項和為Sn,對任意的n∈N*,均存在m∈N*,使得8a12Sn-a14n2=16bm成立,求滿足條件的所有整數(shù)a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求極限$\underset{lim}{x→∞}$$\frac{1+{x}^{3}}{3{x}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=sinx-λcosx的圖象的一個對稱中心是($\frac{π}{3}$,0),則函數(shù)g(x)=λsinxcosx+sin2x圖象的一條對稱軸是(  )
A.x=-$\frac{π}{3}$B.x=$\frac{2π}{3}$C.x=$\frac{π}{6}$D.x=$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若數(shù)列{an},{bn}的通項公式分別為an=(-1)n+2016•a,bn=2+$\frac{{{{(-1)}^{n+2017}}}}{n}$,且an<bn,對任意n∈N*恒成立,則實數(shù)a的取值范圍是(  )
A.$[-1,\frac{1}{2})$B.[-1,1)C.[-2,1)D.$[-2,\frac{3}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知條件p:|x+1|>2,條件q:x>a,且¬p是¬q的充分不必要條件,則a的取值范圍是(  )
A.a≤1B.a≤-3C.a≥-1D.a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,a+b=3.
(1)求橢圓C的方程;
(2)如圖,A,B,D是橢圓C的頂點,P是橢圓C上除頂點外的任意一點,直線DP交x軸于點N,直線AD交BP于點M,設(shè)MN的斜率為m,BP的斜率為n,證明:2m-n為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.由代數(shù)式的乘法法則類比推導(dǎo)向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{a}$”;
②“(m+n)t=mt+nt”類比得到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”;
③“t≠0,mt=nt⇒m=n”類比得到“$\overrightarrow{c}$≠0,$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow$”;
④“|m•n|=|m|•|n|”類比得到“|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|”;
⑤“(m•n)t=m(n•t)”類比得到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$)”;
⑥“$\frac{ac}{bc}$=$\frac{a}$”類比得到$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$.以上的式子中,類比得到的結(jié)論正確的是①②.

查看答案和解析>>

同步練習(xí)冊答案