分析 由題意設(shè)$\overrightarrow{OM}=λ\overrightarrow{OP}$,則$\overrightarrow{OM}=(2λ,λ)$,λ∈R,利用向量三角形減法法則求得$\overrightarrow{MA}、\overrightarrow{MB}$的坐標(biāo),得到關(guān)于λ的二次函數(shù)求最值.
解答 解:由題意設(shè)$\overrightarrow{OM}=λ\overrightarrow{OP}$,則$\overrightarrow{OM}=(2λ,λ)$,λ∈R,
又$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}=(5,1)$,
∴$\overrightarrow{MA}=\overrightarrow{OA}-\overrightarrow{OM}=(1-2λ,7-λ)$,$\overrightarrow{MB}=\overrightarrow{OB}-\overrightarrow{OM}=(5-2λ,1-λ)$.
∴$\overrightarrow{MA}•\overrightarrow{MB}$=(1-2λ,7-λ)•(5-2λ,1-λ)=(1-2λ)(5-2λ)+(7-λ)(1-λ)
=5λ2-20λ+12.
對(duì)稱軸方程為λ=2,
∴當(dāng)λ=2時(shí),$\overrightarrow{MA}•\overrightarrow{MB}$的最小值為5×22-20×2+12=-8.
故答案為:-8.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積運(yùn)算,考查數(shù)量積的坐標(biāo)運(yùn)算及二次函數(shù)求最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1} | B. | {0,2} | C. | {1,2} | D. | {1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 18 | B. | 24 | C. | 36 | D. | 72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com