分析 (Ⅰ)先證明DE⊥平面PCD,可得DE⊥PC,再證明PC⊥平面EFD,即可證明EF⊥PC;
(Ⅱ)過D作DO⊥BC,連接PO,則PO⊥BC,∠DPO是平面PAD與平面PCB所成的角.
解答 證明:(Ⅰ)∵四邊形ABCD為等腰梯形,CD=2,AB=4,AE=1,
∴DE⊥DC,
∵PD⊥平面ABCD,DE⊥平面ABCD,
∴PD⊥DE,
∵PD∩DC=D,
∴DE⊥平面PCD,
∴DE⊥PC,
∵PD=CD,F(xiàn)為PC的中點,
∴DF⊥PC,
∵DE∩DF=D,
∴PC⊥平面EFD,
∵EF?平面EFD,
∴EF⊥PC;
解:(Ⅱ)過D作DO⊥BC,連接PO,則PO⊥BC,
∴∠DPO是平面PAD與平面PCB所成的角.
設CD=1,則DO=$\frac{\sqrt{3}}{2}$,PD=1,
∴PO=$\frac{\sqrt{7}}{2}$,
∴cos∠DPO=$\frac{2\sqrt{7}}{7}$.
點評 本題考查線面垂直的判定與性質(zhì),考查平面與平面所成角,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | -15 | C. | 20 | D. | -20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com