【題目】各項均為正數(shù)的數(shù)列{an}中,a1=1,Sn是數(shù)列{an}的前n項和,對任意n∈N* , 有2Sn=2pan2+pan﹣p(p∈R)
(1)求常數(shù)p的值;
(2)求數(shù)列{an}的通項公式;
(3)記bn= ,求數(shù)列{bn}的前n項和T.
【答案】
(1)解:∵a1=1,對任意的n∈N*,有2Sn=2pan2+pan﹣p
∴2a1=2pa12+pa1﹣p,即2=2p+p﹣p,解得p=1
(2)解:2Sn=2an2+an﹣1,①
2Sn﹣1=2an﹣12+an﹣1﹣1,(n≥2),②
① ﹣②即得(an﹣an﹣1﹣ )(an+an﹣1)=0,
因為an+an﹣1≠0,所以an﹣an﹣1﹣ =0,
∴
(3)解:2Sn=2an2+an﹣1=2× ,
∴Sn= ,
∴ =n2n
Tn=1×21+2×22+…+n2n③
又2Tn=1×22+2×23+…+(n﹣1)2n+n2n+1 ④
④﹣③Tn=﹣1×21﹣(22+23+…+2n)+n2n+1=(n﹣1)2n+1+2
∴Tn=(n﹣1)2n+1+2
【解析】(1)根據(jù)a1=1,對任意的n∈N*,有2Sn=2pan2+pan﹣p,令n=1,解方程即可求得結(jié)果;(2)由2Sn=2an2+an﹣1,知2Sn﹣1=2an﹣12+an﹣1﹣1,(n≥2),所以(an﹣an﹣1﹣1)(an+an﹣1)=0,由此能求出數(shù)列{an}的通項公式.(3)根據(jù) 求出數(shù)列{bn}的通項公式,利用錯位相減法即可求得結(jié)果.
科目:高中數(shù)學 來源: 題型:
【題目】下列各組函數(shù)中不表示同一函數(shù)的是( )
A.f(x)=lgx2 , g(x)=2lg|x|
B.f(x)=x,g(x)=
C.f(x)= ,g(x)=
D.f(x)=|x+1|,g(x)=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=x2+2(a﹣1)x+2在區(qū)間[﹣1,2]上單調(diào),則實數(shù)a的取值范圍為( )
A.[2,+∞)
B.(﹣∞,﹣1]
C.(﹣∞,﹣1]∪[2,+∞)
D.(﹣∞,﹣1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校屆高三文(1)班在一次數(shù)學測驗中,全班名學生的數(shù)學成績的頻率分布直方圖如下,已知分數(shù)在的學生數(shù)有人.
(1)求總?cè)藬?shù)和分數(shù)在的人數(shù);
(2)利用頻率分布直方圖,估算該班學生數(shù)學成績的眾數(shù)和中位數(shù)各是多少?
(3)現(xiàn)在從比分數(shù)在名學生(男女生比例為)中任選人,求其中至多含有名男生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=log (x2﹣2x)的單調(diào)遞增區(qū)間是( )
A.(1,+∞)
B.(2,+∞)
C.(﹣∞,0)
D.(﹣∞,1)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查與市場預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖(1);B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖(2)(注:所示圖中的橫坐標表示投資金額,單位為萬元)
(1)分別求出A,B兩種產(chǎn)品的利潤表示為投資的函數(shù)關(guān)系式;
(2)該企業(yè)已籌集到10萬元資金,并全部投入A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元資金,才能使企業(yè)獲得最大利潤,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com