7.設(shè)數(shù)列{an}的前n項和Sn滿足Sn=$\frac{1}{2}$×3n+1-$\frac{3}{2}$,數(shù)列{bn}滿足bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn

分析 (1)當n=1時,a1=S1=3,當n≥2時,an=Sn-Sn-1=3n,當n=1時,上式成立,即可求得數(shù)列{an}的通項公式;
(2)由(1)可知:bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),采用“裂項法”即可求得數(shù)列{bn}的前n項和Tn

解答 解:(1)Sn=$\frac{1}{2}$×3n+1-$\frac{3}{2}$,
當n=1時,a1=S1=$\frac{1}{2}$×32-$\frac{3}{2}$=3,
當n≥2時,Sn-1=$\frac{1}{2}$×3n-$\frac{3}{2}$,
an=Sn-Sn-1=($\frac{1}{2}$×3n+1-$\frac{3}{2}$)-($\frac{1}{2}$×3n-$\frac{3}{2}$)=3n,
當n=1時,上式成立,
∴an=3n;
(2)bn=$\frac{2}{(n+1)lo{g}_{3}{a}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
數(shù)列{bn}的前n項和Tn,Tn=bn+bn+…+bn,
=2(1-$\frac{1}{2}$)+2($\frac{1}{2}$-$\frac{1}{3}$)+…+2($\frac{1}{n}$-$\frac{1}{n+1}$),
=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$),
=2(1-$\frac{1}{n+1}$),
=$\frac{2n}{n+1}$,
數(shù)列{bn}的前n項和Tn=$\frac{2n}{n+1}$,.

點評 本題考查數(shù)列通項公式的求法,考查利用“裂項法”求數(shù)列前n項和的應(yīng)用,考查計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y≥0}\\{x≤0}\end{array}\right.$,則目標函數(shù)z=2x+2y的取值范圍是( 。
A.[1,4]B.[1,2]C.[2,4]D.[-$\frac{1}{4}$,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在等比數(shù)列中,a1=$\frac{1}{2}$,q=$\frac{1}{2}$,${a_n}=\frac{1}{16}$,則項數(shù)n為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知實數(shù)x,y滿足y=x2-2x+2(-1≤x≤1).試求$\frac{y+3}{x+2}$的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知α,β是兩個不同的平面,m,n是兩條不重合的直線,則下列命題中正確的是( 。
A.若m∥α,α∩β=n,則m∥nB.若l?α,m?α,l∥β,m∥β,則α∥β
C.若m⊥α,m⊥n,則n∥αD.若m⊥α,n⊥β,α⊥β,則m⊥n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若直線ax+by+1=0(ab>0)被圓(x+4)2+(y+1)2=16截得的弦長為8,則$\frac{1}{a}$+$\frac{4}$的最小值為( 。
A.8B.12C.16D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.某全日制大學共有學生5400人,其中?粕1500人,本科生有3000人,研究生有900人.現(xiàn)采用分層抽樣的方法調(diào)查學生利用因特網(wǎng)查找學習資料的情況,抽取的樣本為180人,則應(yīng)在?粕鷮W生中抽取50人.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若A(1,-2)、B(2,1)、C(3,x),且A、B、C三點共線,則x=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)g(x)=ax2-2ax+1+b(a>0).
(1)在區(qū)間[2,3]上的最大值為4,最小值為1,求實數(shù)a,b的值;
(2)若b=1,對任意x∈[1,2),g(x)≥0恒成立,則a的范圍;
(3)若b=1,對任意a∈[2,3],g(x)≥0恒成立,則x的范圍;
(4)在(1)的條件下記f(x)=g(|x|),若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案