9.已知:命題p:函數(shù)f(x)=mx在(1,+∞)內(nèi)單調(diào)增;命題q:函數(shù)g(x)=xm在(1,+∞)內(nèi)單調(diào)增,命題p∨q與命題¬p兩個命題一真一假.求m的取值范圍.

分析 分別求出命題p,q為真時的m的范圍,根據(jù)復合命題的判斷得到p,q同真或同假,得到關(guān)于m的不等式組,解出即可.

解答 解:命題p:函數(shù)f(x)=mx在(1,+∞)內(nèi)單調(diào)增,
故p為真時:m>1;
命題q:函數(shù)g(x)=xm在(1,+∞)內(nèi)單調(diào)增,
故q為真時:m>0,
若命題p∨q與命題¬p兩個命題一真一假,
則p,q同真或同假或p假q真,
∴$\left\{\begin{array}{l}{m>1}\\{m>0}\end{array}\right.$或$\left\{\begin{array}{l}{m≤1}\\{m≤0}\end{array}\right.$或$\left\{\begin{array}{l}{m≤1}\\{m>0}\end{array}\right.$,
故m的范圍是R.

點評 本題考查了復合命題的判斷,考查函數(shù)的單調(diào)性問題,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

19.若曲線y=ax-ln(x+1)在點(0,0)處的切線與直線2x-y-6=0平行,則a=( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若直線l的斜率k的取值范圍為[-1,1],則其傾斜角α的取值范圍是(  )
A.$[\frac{π}{4},\frac{3π}{4}]$B.$[0,\frac{3π}{4}]$C.$[-\frac{π}{4},\frac{π}{4}]$D.$[0,\frac{π}{4}]∪[\frac{3π}{4},π)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上的點到直線x-2y-12=0的距離的最小值為$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知數(shù)列{an}滿足,a1=1,a2=2,an=$\frac{{{a_{n-1}}}}{{{a_{n-2}}}}$,(n≥3,n∈N*).則a2016=( 。
A.1B.2C.$\frac{1}{2}$D.2-2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知各項均不相等的等差數(shù)列{an}的前四項和S4=10,且a2,a4,a8成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=$\frac{1}{(n+2){a}_{n}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)f(x)=$\frac{{e}^{2x}-1}{{e}^{2x}+1}$的圖象關(guān)于( 。
A.坐標原點對稱B.x軸對稱C.y軸對稱D.直線y=x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若復數(shù)z滿足z(1-i)=|1-i|+i,則$\overline{z}$的虛部為$-\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\sqrt{x}$,若f'(x0)=$\frac{1}{8}$,則x0的值為( 。
A.2B.4C.8D.16

查看答案和解析>>

同步練習冊答案