已知函數(shù)f(x)=x2+(m-2)x+m2+12為偶函數(shù),則m的值是(  )
A、1B、2C、3D、4
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:f(-x)=f(x).可得2(m-2)x=0對(duì)于任意實(shí)數(shù)都成立,m-2=0,解出即可.
解答: 解:∵函數(shù)f(x)=x2+(m-2)x+m2+12為偶函數(shù),
∴f(-x)=f(x).
∴x2-(m-2)x+m2+12=x2+(m-2)x+m2+12,
∴2(m-2)x=0對(duì)于任意實(shí)數(shù)都成立;
∴m-2=0,
解得m=2.
故選:B.
點(diǎn)評(píng):本題考查了偶函數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)和奇函數(shù)g(x)的定義域都是(-4,4),它們?cè)冢?4,0]上的圖象分別是圖①和圖②,則關(guān)于x的不等式f(x)•g(x)<0的解集是( 。
A、(-2,0)∪(2,4)
B、[0,4]
C、(2,4)
D、(-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知bn+1=bn2+bn,b1=
1
3
,Tn=
1
b1+1
+
1
b2+1
+…+
1
bn+1
,求Tn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
|x|
x+2
-ax2,其中a∈R,
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)當(dāng)a>0時(shí),求證:函數(shù)f(x)在(0,+∞)內(nèi)有且僅有一個(gè)零點(diǎn);
(3)若函數(shù)f(x)有2個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且
tanB
tanA
=
2c-a
a

(1)求B;
(2)若b=2
2
,a+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(
π
2
,π),sinα=
5
5
,則tan(α+
π
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

log2[log
1
2
(log2x)
]=0,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且lnSn,ln
Sn-an+1
2
,ln(1-an)成等差數(shù)列,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=(x+1)(x+2)(x+3)(x+4)+5在區(qū)間[-2,1]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案