15.已知定義域為R的函數(shù) f (x)的導(dǎo)函數(shù)為f'(x),且滿足f'(x)-2f (x)>4,若 f (0)=-1,則不等式f(x)+2>e2x的解集為( 。
A.(0,+∞)??B.(-1,+∞)??C.(-∞,0)?D.(-∞,-1)

分析 根據(jù)條件構(gòu)造函數(shù)F(x)=$\frac{f(x)+2}{{e}^{2x}}$,求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.

解答 解:設(shè)F(x)=$\frac{f(x)+2}{{e}^{2x}}$,
則F′(x)=$\frac{f′(x)-2f(x)-4}{{e}^{2x}}$,
∵f(x)-2f′(x)-4>0,
∴F′(x)>0,即函數(shù)F(x)在定義域上單調(diào)遞增,
∵f(0)=-1,∴F(0)=1,
∴不等式f(x)+2>e2x等價為不等式 $\frac{f(x)+2}{{e}^{2x}}$>1等價為F(x)>F(0),
解得x>0,
故不等式的解集為(0,+∞),
故選:A.

點評 本題主要考查函數(shù)單調(diào)性的判斷和應(yīng)用,根據(jù)條件構(gòu)造函數(shù)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.《九章算術(shù)》“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第5節(jié)的容積為( 。
A.$\frac{10}{11}$升B.$\frac{65}{66}$升C.$\frac{67}{66}$升D.$\frac{37}{33}$升

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知{an}是等比數(shù)列,a2=2且公比q>0,-2,a1,a3成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)已知bn=anan+1-λnan+1(n=1,2,3,…),設(shè)Sn是數(shù)列{bn}的前n項和.若S1>S2,且Sk<Sk+1(k=2,3,4,…),求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l:ax+y+b=0與圓O:x2+y2=4相交于A、B兩點,$M({\sqrt{3},-1})$,且$\overrightarrow{OA}+\overrightarrow{OB}=\frac{2}{3}\overrightarrow{OM}$,則$\sqrt{3}ab$等于( 。
A.-3B.-4C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)復(fù)數(shù)z1=1+2i,z2=2-i,i為虛數(shù)單位,則z1z2=( 。
A.4+3iB.4-3iC.-3iD.3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行圖中程序框圖,若輸入x1=2,x2=3,x3=7,則輸出的T值為(  )
A.3B.4C.$\frac{11}{3}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的離心率為(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,記數(shù)列{an}的前n項之積為T,則T2017的值為( 。
A.-$\frac{1}{2}$B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(x,y)是不等式組$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$表示的平面區(qū)域內(nèi)的一個動點,且目標函數(shù)z=2x+y的最大值為7,最小值為1,則$\frac{a-b+c}{a}$=0.

查看答案和解析>>

同步練習(xí)冊答案