分析 根據(jù)題意,作出不等式組表示的三角形區(qū)域如圖,再將直線l:z=2x+y進行平移,可得使z取得最小值1的點A坐標為(1,-1),取得最大值7的點B坐標為(3,1),最后將A、B坐標代入第三個不等式對應的直線方程,可得b=-a,c=-2a,從而求出目標函數(shù)的值.
解答 解:∵目標函數(shù)z=2x+y在不等式組$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$表示的平面區(qū)域內(nèi)既有最大值,也有最小值,
不等式組$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{ax+by+c≥0}\end{array}\right.$表示的平面區(qū)域是一個三角形區(qū)域(含邊界)
作出可行域如右圖,將直線l:z=2x+y,即y=-2x+z進行平移,可得
當l經(jīng)過直線x=1和ax+by+c=0的交點A(1,y0)時,z取得最小值1;
當l經(jīng)過直線x+y=4和ax+by+c=0的交點B時,z取得最大值7.
∴1×2+y0=1,解之得y0=-1且$\left\{\begin{array}{l}{x+y=4}\\{2x+y=7}\end{array}\right.$,解之得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,
因此,A的坐標為(1,-1),B的坐標為(3,1),代入不等式第三式對應直線,
可得$\left\{\begin{array}{l}{a-b+c=0}\\{3a+b+c=0}\end{array}\right.$,所以b=-a,c=-2a,可得$\frac{a-b+c}{a}$=0
故答案為:0.
點評 本題給出一個待定的平面區(qū)域,在已知目標函數(shù)的最值時求字母參數(shù)的比值,著重考查了簡單線性規(guī)劃的應用的知識,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞)?? | B. | (-1,+∞)?? | C. | (-∞,0)? | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 12 | B. | 16 | C. | 20 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{16}$=1 | B. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1 | C. | $\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{36}$=1 | D. | $\frac{{y}^{2}}{36}$-$\frac{{x}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com