已知ω>0,a=(2sinωx+cosωx,2sinωx-cosωx),b=(sinωx,cosωx).f(x)=a·b.f(x)圖象上相鄰的兩個對稱軸的距離是.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間上的最大值和最小值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=sin2ωx+2sinωx·cosωx-cos2ωx+λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(,1).
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(,0),求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量a=(sinθ,cosθ),b=(,1),其中θ∈(0,).
(1)若a∥b,求sinθ和cosθ的值;
(2)若f(θ)=(a+b)2,求f(θ)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013·鹽城二模)已知函數(shù)f(x)=4sinxcos(x+)+.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間上的最大值和最小值及取得最值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若向量m=(sinωx,0),n=(cosωx,-sinωx)(ω>0),在函數(shù)f(x)=
m·(m+n)+t的圖象中,對稱中心到對稱軸的最小距離為,且當(dāng)x∈[0,]時,f(x)的最大值為1.
(1)求函數(shù)f(x)的解析式.
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com