【題目】如圖,在四棱錐 中,底面梯形 中, ,平面 平面 , 是等邊三角形,已知 , .
(1)求證:平面 平面 ;
(2)求二面角 的余弦值.
【答案】
(1)證明:在 中,由于 ,
∴ ,故 .
又 ,
,∴ 平面 ,
又 ,故平面 平面 .
(2)如圖建立 空間直角坐標(biāo)系,
, , , , , , .
設(shè)平面 的法向量 ,
由
令 , ∴ .
設(shè)平面 的法向量 ,
由 ,令 ,∴ .
,∴二面角 的余弦值為
【解析】本題主要考查線(xiàn)面、面面垂直的證明以及利用空間向量求解二面角的大小的問(wèn)題。(1)把證明面面垂直的問(wèn)題轉(zhuǎn)化為證明線(xiàn)面垂直,再把線(xiàn)面垂直問(wèn)題轉(zhuǎn)化為線(xiàn)線(xiàn)垂直問(wèn)題,利用判定定理進(jìn)行證明。(2)建立空間直角坐標(biāo)系,找到坐標(biāo),利用二面角公式即可求解。
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平面與平面垂直的判定(一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: 的離心率為 ,F(xiàn)1 , F2分別是它的左、右焦點(diǎn),且存在直線(xiàn)l,使F1 , F2關(guān)于l的對(duì)稱(chēng)點(diǎn)恰好為圓C:x2+y2﹣4mx﹣2my+5m2﹣4=0(m∈R,m≠0)的一條直徑的兩個(gè)端點(diǎn).
(1)求橢圓E的方程;
(2)設(shè)直線(xiàn)l與拋物線(xiàn)y2=2px(p>0)相交于A,B兩點(diǎn),射線(xiàn)F1A,F(xiàn)1B與橢圓E分別相交于點(diǎn)M,N,試探究:是否存在數(shù)集D,當(dāng)且僅當(dāng)p∈D時(shí),總存在m,使點(diǎn)F1在以線(xiàn)段MN為直徑的圓內(nèi)?若存在,求出數(shù)集D;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)絡(luò)營(yíng)銷(xiāo)和電子商務(wù)的興起,人們的購(gòu)物方式更具多樣化,某調(diào)查機(jī)構(gòu)隨機(jī)抽取10名購(gòu)物者進(jìn)行采訪(fǎng),5名男性購(gòu)物者中有3名傾向于選擇網(wǎng)購(gòu),2名傾向于選擇實(shí)體店,5名女性購(gòu)物者中有2名傾向于選擇網(wǎng)購(gòu),3名傾向于選擇實(shí)體店.
(1)若從10名購(gòu)物者中隨機(jī)抽取2名,其中男、女各一名,求至少1名傾向于選擇實(shí)體店的概率;
(2)若從這10名購(gòu)物者中隨機(jī)抽取3名,設(shè)X表示抽到傾向于選擇網(wǎng)購(gòu)的男性購(gòu)物者的人數(shù),求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an}中,首項(xiàng) ,前n項(xiàng)和為Sn , 且
(1)求數(shù)列{an}的通項(xiàng)
(2)如果bn=3(n+1)×2nan , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同時(shí)滿(mǎn)足條件:
①x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0,則m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A,B是兩個(gè)非空集合,定義運(yùn)算A×B={x|x∈A∪B且xA∩B}.已知A={x|y= },B={y|y=2x , x>0},則A×B=( )
A.[0,1]∪(2,+∞)
B.[0,1)∪[2,+∞)
C.[0,1]
D.[0,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓 的離心率為 ,其左焦點(diǎn)到點(diǎn) 的距離為 .不過(guò)原點(diǎn) 的直線(xiàn) 與 相交于 兩點(diǎn),且線(xiàn)段 被直線(xiàn) 平分.
(1)求橢圓 的方程;
(2)求 的面積取最大值時(shí)直線(xiàn) 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓和雙曲線(xiàn)有共同焦點(diǎn) , 是它們的一個(gè)交點(diǎn),且 ,記橢圓和雙曲線(xiàn)的離心率分別為 ,則 的最大值為( )
A.
B.
C.2
D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com