分析 (1)由∠BAE=θ,$∠E=\frac{π}{2}$,推出$∠ABE=\frac{π}{2}-θ$,∠CFB=θ.通過EF=EB+BF=50sinθ+40cosθ,得到y(tǒng)關(guān)于θ的函數(shù)表達(dá)式;
(2)結(jié)合(1)求出S=2000+4100sinθcosθ=2000+2050sin2θ($0<θ<\frac{π}{2}$),利用三角函數(shù)的最值求解即可.
解答 解:(1)由∠BAE=θ,$∠E=\frac{π}{2}$,得$∠ABE=\frac{π}{2}-θ$,
又$∠ABC=\frac{π}{2}$,所以∠CFB=θ.
由AB=50,BC=40,所以EF=EB+BF=50sinθ+40cosθ,
即y=50sinθ+40cosθ($0<θ<\frac{π}{2}$).
(2)由(1)可知,EF=50sinθ+40cosθ,GF=CF+CG=40sinθ+50cosθ,
所以S=2000+4100sinθcosθ=2000+2050sin2θ($0<θ<\frac{π}{2}$),
當(dāng)$θ=\frac{π}{4}$時,S取得最大值,且最大值為4050(平方米).
點(diǎn)評 本題考查三角函數(shù)的最值,三角形的解法,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[50,60) | 5 | 0.1 |
[60,70) | m | 0.2 |
[70,80) | 15 | n |
[80,90) | 12 | 0.24 |
8 | 0.16 | |
合計(jì) | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com