1.在極坐標(biāo)系中,過點(diǎn)A(6,π)作圓ρ=-4cosθ的切線,則切線長為( 。
A.6B.$2\sqrt{3}$C.$4\sqrt{3}$D.$2\sqrt{15}$

分析 把圓的極坐標(biāo)方程化為直角坐標(biāo)方程,利用圓的切線的性質(zhì)、勾股定理即可得出.

解答 解:圓ρ=-4cosθ即ρ2=-4ρcosθ,化為直角坐標(biāo)方程:x2+y2=-4x,配方為:(x+2)2+y2=4.
可得圓心C(-2,0),半徑r=2.
點(diǎn)A(6,π),化為直角坐標(biāo)A(-6,0),可得|AC|=4.
∴過點(diǎn)A(6,π)作圓ρ=-4cosθ的切線,則切線長=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
故選:B.

點(diǎn)評 本題考查了圓的極坐標(biāo)方程化為直角坐標(biāo)方程,利用圓的切線的性質(zhì)、勾股定理,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={x|k+1≤x≤2k},B={x|1≤x≤3},則能使A∩B=A成立的實(shí)數(shù)k的取值范圍是$({-∞,\frac{3}{2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)z滿足z(1+i)=|1-i|,則復(fù)數(shù)z的虛部是( 。
A.-1B.1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=4cosα}\\{y=sinα}\end{array}}\right.$(α為參數(shù)),M是曲線C上的動點(diǎn),若曲線T極坐標(biāo)方程2ρsinθ+ρcosθ=20,則點(diǎn)M到T的距離的最大值( 。
A.$\sqrt{13}+4\sqrt{5}$B.$2+4\sqrt{5}$C.$4+4\sqrt{5}$D.$6\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)正實(shí)數(shù)集合A={a1,a2,a3,…,an},集合S={(a,b)|a∈A,b∈A,a-b∈A},則集合S中元素最多有$\frac{n(n-1)}{2}$個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=5cosα}\\{y=-6+5sinα}\end{array}$(α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程為θ=α0,其中α0滿足tanα0=$\frac{\sqrt{5}}{2}$,l與C交于A,B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{a}{3}{x^3}+\frac{2}{x^2}-{a^2}$x(a>0,b∈R).
(Ⅰ)當(dāng)a=1時,判斷函數(shù)f(x)在R上的單調(diào)性,并證明你的結(jié)論;
(Ⅱ)若x1,x2是函數(shù)f(x)的兩個不同的極值點(diǎn),且|x1-x2|=$\sqrt{\frac{2}{a}-1}$,求實(shí)數(shù)a,b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知命題p:曲線y=x2+(2m-3)x+1與x軸相交于不同的兩點(diǎn);命題$q:\frac{x^2}{m}+\frac{y^2}{2}=1$表示焦點(diǎn)在x軸上的橢圓.若“p∨q”為真命題,“p∧q”為假命題,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中奇數(shù)的個數(shù)為72(用數(shù)字回答)

查看答案和解析>>

同步練習(xí)冊答案