9.已知函數(shù)f(x)是定義在R上的增函數(shù),若f(a2-a)>f(2a2-4a),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,0)B.(0,3)C.(3,+∞)D.(-∞,0)∪(3,+∞)

分析 因?yàn)閒(x)為R上的增函數(shù),所以f(a2-a)>f(2a2-4a),等價(jià)于a2-a>2a2-4a,即可求出實(shí)數(shù)a的取值范圍.

解答 解:因?yàn)閒(x)為R上的增函數(shù),所以f(a2-a)>f(2a2-4a),等價(jià)于a2-a>2a2-4a,
解得0<a<3,
故選B.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性,考查學(xué)生解不等式的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x<0時(shí),$f(x)=2_{\;}^x$,則f(log49)的值為( 。
A.-3B.$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=cos(\frac{2π}{3}x)+(a-1)sin(\frac{π}{3}x)+a,g(x)={2^x}-{x^2}$,若f[g(x)]≤0對(duì)x∈[0,1]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.$(-∞,\sqrt{3}-1]$B.(-∞,0]C.[0,$\sqrt{3}$-1]D.$(-∞,1-\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù) f(x)=kx($\frac{1}{e}$≤x≤e2),與函數(shù)$g(x)={(\frac{1}{e})^{\frac{x}{2}}}$,若f(x)與g(x)的圖象上分別存在點(diǎn)M,N,使得MN關(guān)于直線y=x對(duì)稱,則實(shí)數(shù)k的取值范圍是(  )
A.[-$\frac{1}{e}$,e]B.[-$\frac{2}{e}$,2e]C.(-$\frac{2}{e}$,2e)D.[-$\frac{3}{e}$,3e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)f(x)=$\left\{\begin{array}{l}2x-{x^2}(0≤x≤3)\\{x^2}+6x(-2≤x<0)\end{array}\right.$的值域是[-8,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=x2-6x-9,則函數(shù)f(x)在x∈(1,4)的值域是[-18,-14).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.給出下列兩個(gè)命題:
命題p::若在邊長(zhǎng)為1的正方形ABCD內(nèi)任取一點(diǎn)M,則|MA|≤1的概率為$\frac{π}{4}$.
命題q:若從一只只有3枚一元硬幣和2枚五角硬幣的儲(chǔ)錢罐內(nèi)隨機(jī)取出2枚硬幣(假設(shè)每枚硬幣被抽到都是等可能的),則總共取到2圓錢的概率為$\frac{1}{3}$.那么,下列命題中為真命題的是( 。
A.p∧qB.?pC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)函數(shù) f(x)=|3x+1|-|x-4|.
(1)解不等式f(x)<0
(2)若f(x)+4|x-4|>m對(duì)一切實(shí)數(shù)x均成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,在正六邊形ABCDEF,點(diǎn)O為其中心,則下列判斷錯(cuò)誤的是( 。
A.$\overrightarrow{AB}=\overrightarrow{OC}$B.$\overrightarrow{AB}∥\overrightarrow{DE}$C.$|{\overrightarrow{AD}}|=|{\overrightarrow{BE}}|$D.$|{\overrightarrow{AC}}|=|{\overrightarrow{BE}}|$

查看答案和解析>>

同步練習(xí)冊(cè)答案