19.已知f(x)是定義在R上的偶函數(shù),且當(dāng)x<0時(shí),$f(x)=2_{\;}^x$,則f(log49)的值為( 。
A.-3B.$\frac{1}{3}$C.$\frac{1}{2}$D.3

分析 f(x)是定義在R上的偶函數(shù),當(dāng)x<0時(shí),$f(x)=2_{\;}^x$,可得f(log49)=f(-log49)=f(log4$\frac{1}{9}$)=${2}^{lo{g}_{4}\frac{1}{9}}$=$\frac{1}{3}$.

解答 解:∵f(x)是定義在R上的偶函數(shù),當(dāng)x<0時(shí),$f(x)=2_{\;}^x$,
∴f(log49)=f(-log49)=f(log4$\frac{1}{9}$)=${2}^{lo{g}_{4}\frac{1}{9}}$=$\frac{1}{3}$,
故選B.

點(diǎn)評 本題考查偶函數(shù)的性質(zhì),考查對數(shù)運(yùn)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)是定義在R上的偶函數(shù),又f(2)=0,若x>0時(shí),xf′(x)-f(x)>0,則不等式xf(x)<0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:下雨時(shí),用一個(gè)圓臺形的天池盆接雨水.天池盆盆口直徑為28寸,盆底直徑為12寸,盆深18寸.若盆中積水深9寸,則平地降雨量是( 。┐纾ㄗⅲ浩降亟涤炅康扔谂柚蟹e水體積除以盆口面積)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知$\frac{tan(α-γ)}{tanα}$+$\frac{si{n}^{2}β}{si{n}^{2}α}$=1,求證:tan2β=tanαtanγ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若x,y滿足約束條件$\left\{\begin{array}{l}2x+y≤8\\ x+3y≤9\\ x≥0,y≥0\end{array}\right.$,則$\frac{y-6}{x-6}$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.曲線y=ex在點(diǎn)A(0,1)處的切線斜率為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知x>0,y>0,且x+8y-xy=0.
(1)當(dāng)x,y分別為何值時(shí),xy取得最小值?
(2)當(dāng)x,y分別為何值時(shí),x+y取得最小值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如果△ABC內(nèi)接于單位圓,且$({a^2}-{c^2})=(\sqrt{2}a-b)b$,則△ABC面積的最大值為$\frac{{\sqrt{2}+1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)是定義在R上的增函數(shù),若f(a2-a)>f(2a2-4a),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,0)B.(0,3)C.(3,+∞)D.(-∞,0)∪(3,+∞)

查看答案和解析>>

同步練習(xí)冊答案