15.解不等式:x2>(k+1)x-k.

分析 首先對(duì)不等式變形,然后分解因式,討論對(duì)應(yīng)根k與1的大小,得到不等式的解集.

解答 解:x2>(k+1)x-k變形為(x-k)(x-1)>0,
所以當(dāng)k>1時(shí),不等式的解集是{x|x<1或x>k};
當(dāng)k=1時(shí),不等式的解集是{x|x≠1}
當(dāng)k<1時(shí),不等式的解集是{x|x<k或x>1}.

點(diǎn)評(píng) 本題考查了含有參數(shù)的一元二次不等式的解法;考查了討論的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知定點(diǎn)F(2,0),定直線l:x=$\frac{1}{2}$,動(dòng)點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的2倍,設(shè)點(diǎn)P的軌跡為E.
(1)求E的方程;
(2)若F1(-2,0),直線l1:y=x+t,t∈(-1,1)與曲線E交于C、D兩點(diǎn),求四邊形F1CFD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三棱錐A-BCD的所有棱長都相等,若AB與平面α所成角等于$\frac{π}{3}$,則平面ACD與平面α所成角的正弦值的取值范圍是( 。
A.[$\frac{3-\sqrt{6}}{6}$,$\frac{3+\sqrt{6}}{6}$]B.[$\frac{3-\sqrt{6}}{6}$,1]C.[$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{2}}{2}$+$\frac{\sqrt{3}}{6}$]D.[$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{3}}{6}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)$f(x)=\left\{\begin{array}{l}{3^x}-a,x≤1\\ ln({x-1}),x>1\end{array}\right.$有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)a的取值范圍是(0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某公路段在某一時(shí)刻內(nèi)監(jiān)測到的車速頻率分布直方圖如圖所示.
(1)求縱坐標(biāo)中h的值及第三個(gè)小長方形的面積;
(2)求平均車速$\overline{v}$的估計(jì)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.安排甲、乙、丙、丁四人參加周一至周五的公益活動(dòng),每天只需一人參加,其中甲參加三天活動(dòng),甲、乙、丙、丁每人參加一天,那么甲連續(xù)三天參加活動(dòng)的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)求不等式|x-1|+|x-2|-3>0的解集;
(2)已知a1,a2,…,an∈R,且a1•a2•…•an=1,求證:(1+a1)•(1+a2)…(1+an)≥2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為PC的中點(diǎn),E為AD的中點(diǎn),PA=AC=2,BC=1.
(1)求證:AD⊥平面PBC;
(2)求PE與平面ABD所成角的正弦值;
(3)設(shè)點(diǎn)F在線段PB上,且$\frac{PF}{PB}$=λ,EF∥平面ABC,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在斜三棱柱ABC-A1B1C1中,頂點(diǎn)A1在底面ABC內(nèi)的射影恰為線段AB的中點(diǎn),AA1=2,△ABC為邊長為2的正三角形,N為△ABC的中心,$\overrightarrow{{C}_{1}M}$=2$\overrightarrow{MB}$.
(1)求證:MN∥平面A1B1BA;
(2)求三棱錐B1-A1AM的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案