3.若函數(shù)$f(x)=\left\{\begin{array}{l}{3^x}-a,x≤1\\ ln({x-1}),x>1\end{array}\right.$有兩個不同的零點,則實數(shù)a的取值范圍是(0,1].

分析 由f(x)=ln(x-1)=0,得x=2.由題意得,當(dāng)x≤1時,函數(shù)f(x)=3x-a還有一個零點,運用指數(shù)函數(shù)的單調(diào)性,即可求出a的取值范圍.

解答 解:當(dāng)x>1時,由f(x)=ln(x-1)=0,得x=2.
∵函數(shù)f(x)有兩個不同的零點,
∴當(dāng)x≤1時,函數(shù)f(x)=3x-a還有一個零點,
令f(x)=0得a=3x
∵0<3x≤30=1,∴0<a≤1,
∴實數(shù)a的取值范圍是0<a≤1.
故答案為:(0,1].

點評 本題考查指數(shù)函數(shù)的單調(diào)性和運用,考查對數(shù)的性質(zhì)及應(yīng)用,函數(shù)的零點問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}|x|+2,x<1\\ x+\frac{2}{x},x≥1.\end{array}$,設(shè)a∈R,若關(guān)于x的不等式f(x)≥|$\frac{x}{2}$+a|在R上恒成立,則a的取值范圍是( 。
A.[-2,2]B.$[-2\sqrt{3},2]$C.$[-2,2\sqrt{3}]$D.$[-2\sqrt{3},2\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x<0}\\{x-2,x≥0}\end{array}\right.$,若f[f(-2)]=a,實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-a≥0}\\{x+y≤6}\\{2x-y≤6}\end{array}\right.$,則目標(biāo)函數(shù)z=$\frac{3x+4y+10}{x+2}$的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.閱讀下列偽代碼,當(dāng)a,b的輸入值分別為2,3時,則輸出的實數(shù)m的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)曲線f(x)=$\sqrt{{m^2}+1}cosx$(m∈R)上任一點(x,y)處切線斜率為g(x),則函數(shù)y=x2g(x)的部分圖象可以為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)計院擬從4個國家級課題和6個省級課題中各選2個課題作為本年度的研究項目,若國家級課題A和省級課題B至少有一個被選中的不同選法種數(shù)是m,那么二項式(1+mx28的展開式中x4的系數(shù)為( 。
A.54000B.100400C.100600D.100800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.解不等式:x2>(k+1)x-k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)復(fù)數(shù)z=x+(y-1)i(x,y∈R),若|z|≤1,則x+y≥2的概率為( 。
A.$\frac{1}{4}$B.$\frac{π-2}{4π}$C.$\frac{1}{2π}$D.$\frac{3π+2}{4π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知命題p:關(guān)于x的方程x2-ax+4=0有實根;命題q:關(guān)于x的函數(shù)y=2x2+ax+4在[3,+∞)上是增函數(shù),若p∧q是真命題,則實數(shù)a的取值范圍是[-12,-4]∪[4,+∞).

查看答案和解析>>

同步練習(xí)冊答案