11.已知函數(shù)f(x)=3x2+5x-2,求f(3)、f(-$\sqrt{2}$)、f(a)、f(a+1)的值.

分析 由已知利用函數(shù)性質(zhì)能求出f(3)、f(-$\sqrt{2}$)、f(a)、f(a+1)的值.

解答 解:∵函數(shù)f(x)=3x2+5x-2,
∴f(3)=3×9+5×3-2=40,
f(-$\sqrt{2}$)=3×2+5×$(-\sqrt{2})$-2=4-5$\sqrt{2}$,
f(a)=3a2+5a-2,
f(a+1)=3(a+1)2+5(a+1)-2=3a2+11a+6.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,∠BAC=90°,AD是BC邊上的高,則相似三角形共有(  )
A.0對B.1對C.2對D.3對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,3),則向量2$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$的夾角為(  )
A.45°B.105°C.40°D.35°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若α為第三象限,則$\frac{cosα}{\sqrt{1-si{n}^{2}α}}$+$\frac{2sinα}{\sqrt{1-co{s}^{2}α}}$=-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在△ABC中,角A、B、C所對的邊分別為a、b、c,且a=2,cosB=$\frac{3}{5}$.
(1)若b=4,求sinA的值;
(2)若△ABC的面積S△ABC=4,求b、c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知曲線C的極坐標方程為${ρ^2}=\frac{9}{{{{cos}^2}θ+9{{sin}^2}θ}}$,以極點為平面直角坐標系的原點,極軸為x軸的正半軸建立平面直角坐標系.
(1)求曲線C的普通方程;
(2)A、B為曲線C上兩個點,若OA⊥OB,求$\frac{1}{{|OA{|^2}}}+\frac{1}{{|OB{|^2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在△ABC中,角A,B,C的對邊分別是a,b,c,若$a=\frac{2}=\frac{2}{3}c$,則△ABC的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知圓心為C的圓滿足下列條件:圓心C位于x軸上,與直線x-y+1=0相切,且被y軸截得的弦長為2.
(1)求圓C的標準方程.
(2)設過點M(0,3)的直線l與圓C交于不同的兩點A,B,以OA,OB為鄰邊作平行四邊形OADB.是否存在這樣的直線l,使得直線OD與MC恰好平行?如果存在,求出直線l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系xOy中,已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,且橢圓C1的短軸長為2.
(1)求橢圓C1的方程;
(2)設A(0,$\frac{1}{16}$),N為拋物線C2:y=x2上一動點,過點N作拋物線C2的切線交橢圓C1于B,C兩點,求△ABC面積的最大值.

查看答案和解析>>

同步練習冊答案