若關(guān)于x的方程
1+a-x
-a+
x
=0有實數(shù)解,求正整數(shù)a的取值范圍.
考點:函數(shù)的零點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:若關(guān)于x的方程
1+a-x
-a+
x
=0有實數(shù)解,則關(guān)于x的方程
1+a-x
=a-
x
有實數(shù)解,即1+a-x=x+a2-2a
x
有實數(shù)解,即2x-2a
x
+a2-a-1=0有實數(shù)解,即△=(2a)2-8(a2-a-1)≥0,結(jié)合a為正整數(shù),可得答案.
解答: 解:若關(guān)于x的方程
1+a-x
-a+
x
=0有實數(shù)解,
則關(guān)于x的方程
1+a-x
=a-
x
有實數(shù)解,
即1+a-x=x+a2-2a
x
有實數(shù)解,
即2x-2a
x
+a2-a-1=0有實數(shù)解,
故△=(2a)2-8(a2-a-1)≥0,
即a2-2a-2≤0,
解得:a∈[1-
3
,1+
3
],
又由a為正整數(shù),
故a=1,或a=2
點評:本題考查的知識點是方程的根,其中將問題轉(zhuǎn)化為二次方程根的個數(shù)判斷,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在整數(shù)集上的函數(shù),且f(x)滿足:“當f(k)≥k2成立時,總可以推出f(k+1)≥(k+1)2成立”.那么下列命題總成立的是( 。
A、若f(3)≥9成立,則當k≥1時均有f(k)≥k2成立
B、若f(5)≥25成立,則當k≤5時均有f(k)≥k2成立
C、若f(7)<49成立,則當k≥8時均有f(k)<k2成立
D、若f(4)=25成立,則當k≥4時均有f(k)≥k2成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于給定數(shù)列{cn},如果存在實常數(shù)p、q,使得cn+1=pcn+q對于任意n∈N*都成立,我們稱數(shù)列{cn}是“M類數(shù)列”.
(1)若an=2n,bn=3•2n,n∈N*,數(shù)列{an}、{bn}是否為“M類數(shù)列”?若是,指出它對應(yīng)的實常數(shù)p,q,若不是,請說明理由;
(2)若數(shù)列{an}滿足a1=2,an+an+1=3•2n(n∈N*).
①求數(shù)列{an}前2015項的和;
②已知數(shù)列{an}是“M類數(shù)列”,求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
1
3
x3-
1
2
ax2
+2x,討論f(x)的單調(diào)性..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+b
2x+1+2
是奇函數(shù).
(1)求b的值;
(2)判斷函數(shù)f(x)在R上的單調(diào)性并加以證明;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
a
x+
1
2
+ln(x+
1
2
)-1在x∈[0,e]上有兩個零點.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知g(x)=ex+x2
2
3
x-
3
2
),f(x)是g(x)的導(dǎo)函數(shù).
(1)判斷函數(shù)f(x)在區(qū)間[0,1]上極值點的個數(shù);
(2)當x≥
1
2
時,若關(guān)于x的不等式f(x)≥
5
2
x2+(a-3)x+1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列各條件寫出直線的方程,并且化成一般式:
(1)斜率是-
1
2
,經(jīng)過點A(8,-2);
(2)經(jīng)過點B(4,2),平行于x軸;
(3)在x軸和y軸上的截距分別是
3
2
,-3;
(4)經(jīng)過兩點P1(3,-2),P2(5,-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,正三角形ABC的邊長為2,D、E、F分別為各邊的中點將△ABC沿DE、EF、DF折疊,使A、B、C三點重合,構(gòu)成三棱錐A-DEF如圖2.
(Ⅰ)求平面ADE與底面DEF所成二面角的余弦值;
(Ⅱ)設(shè)點M、N分別在AD、EF上,
AM
MD
=
EN
NF
=λ(λ>0,λ為變量).
①當λ為何值時,MN為異面直線AD與EF的公垂線段?請證明你的結(jié)論;
②設(shè)異面直線MN與AE所成的角為α,異面直線MN與DF所成的角為β,試求α+β的值.

查看答案和解析>>

同步練習(xí)冊答案