17.已知集合A={x∈Z|(2x+3)(x-3)<0},B={x|y=$\sqrt{1-lnx}$},則A∩B=( 。
A.(0,e]B.{0,e}C.{1,2}D.(1,2)

分析 分別求出關(guān)于A、B的不等式,求出A、B的范圍,取交集即可.

解答 解:A={x∈Z|(2x+3)(x-3)<0}={-1,0,1,2},
B={x|y=$\sqrt{1-lnx}$}={x|1-lnx≥0}={x|0<x≤e},
則A∩B={1,2},
故選:C.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,考查解不等式問(wèn)題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)的定義域?yàn)镽,其圖象關(guān)于點(diǎn)(1,0)中心對(duì)稱,其導(dǎo)函數(shù)為f′(x),當(dāng)x<1時(shí),(x-1)[f(x)+(x-1)f′(x)]>0,則不等式xf(x+1)>f(2)的解集為( 。
A.(-∞,-1)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.如圖,在△ABC中,M為BC上不同于B,C的任意一點(diǎn),點(diǎn)N滿足$\overrightarrow{AN}=2\overrightarrow{NM}$.若$\overrightarrow{AN}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x2+9y2的最小值為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知由甲、乙兩位男生和丙、丁兩位女生組成的四人沖關(guān)小組,參加由安徽衛(wèi)視推出的大型戶外競(jìng)技類活動(dòng)《男生女生向前沖》.活動(dòng)共有四關(guān),若四關(guān)都闖過(guò),則闖關(guān)成功,否則落水失。O(shè)男生闖過(guò)一至四關(guān)的概率依次是$\frac{5}{6}$,$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,女生闖過(guò)一至四關(guān)的概率依次是$\frac{4}{5}$,$\frac{3}{4}$,$\frac{2}{3}$,$\frac{1}{2}$.
(Ⅰ)求男生甲闖關(guān)失敗的概率;
(Ⅱ)設(shè)X表示四人沖關(guān)小組闖關(guān)成功的人數(shù),求隨機(jī)變量X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.甲,乙兩臺(tái)機(jī)床同時(shí)生產(chǎn)一種零件,其質(zhì)量按測(cè)試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機(jī)抽取這兩臺(tái)車床生產(chǎn)的零件各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo)[85,90)[90,95)[95,100)[100,105)[105,110)
機(jī)床甲81240328
機(jī)床乙71840296
(1)試分別估計(jì)甲機(jī)床、乙機(jī)床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機(jī)床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機(jī)床某天生產(chǎn)50件零件,請(qǐng)估計(jì)甲機(jī)床該天的日利潤(rùn)(單位:元);
(3)從甲、乙機(jī)床生產(chǎn)的零件指標(biāo)在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進(jìn)行質(zhì)量分析,求這2件都是乙機(jī)床生產(chǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在菱形ABCD中,AB=2,∠A=60°,M為BC中點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{BD}$=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知雙曲線$M:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦點(diǎn)分別為F1、F2,|F1F2|=2c.若雙曲線M的右支上存在點(diǎn)P,使$\frac{a}{{sin∠P{F_1}{F_2}}}=\frac{3c}{{sin∠P{F_2}{F_1}}}$,則雙曲線M的離心率的取值范圍為( 。
A.$(1,\frac{{2+\sqrt{7}}}{3})$B.$(1,\frac{{2+\sqrt{7}}}{3}]$C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知三棱錐P-ABC中,AC⊥BC,AC=BC=2,PA=PB=BC=3,O是AB中點(diǎn),E是PB中點(diǎn).
(1)證明:平面PAB⊥平面ABC;
(2)求點(diǎn)B到平面OEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{4}=1$過(guò)點(diǎn)(2,-1),則雙曲線的離心率為( 。
A.$\sqrt{2}$B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案