如圖,長(zhǎng)方體中,,點(diǎn)E是AB的中點(diǎn).
(1)證明:平面;
(2)證明:;
(3)求二面角的正切值.
(1)詳見解析;(2)詳見解析;(3)
解析試題分析:(1)證明直線和平面平行,一般方法有兩種:①利用直線和平面平行的判定定理(在平面內(nèi)找一條直線與之平行),②利用面面平行的性質(zhì)(如果兩個(gè)平面平行,則一個(gè)平面內(nèi)的直線和另一個(gè)平面平行),連接,交與點(diǎn),連接,可證∥,從而平面,(2)證明直線和直線垂直,可先證明直線和平面垂直,由,從而面,所以,(3) 求二面角的平面角,可以利用幾何法,先找到二面角的平面角,然后借助平面圖形去計(jì)算,∵
,所以,進(jìn)而可證,就是的平面角,二面角也可以利用空間向量法,建立適當(dāng)?shù)目臻g直角坐標(biāo)系,把相關(guān)點(diǎn)的坐標(biāo)表示出來(lái),計(jì)算兩個(gè)半平面的法向量,進(jìn)而求法向量的夾角,然后得二面角的余弦值.
試題解析:(1)證明:連結(jié)AD1交A1D于O,連結(jié)EO,則O為AD1的中點(diǎn),又因?yàn)镋是AB的中點(diǎn),
所以O(shè)E∥BD1. 又∵平面A1DE BD1平面A1DE ∴BD1∥平面A1DE 4分
(2)證明:由題可知:四邊形ADD1A1是正方形∴A1D⊥AD1 又∵AB⊥平面ADD1A1,A1D平面ADD1A1
∴AB⊥AD1 又∵AB平面AD1E,AD1平面A D1E ABAD1=A,∴A1D⊥平面AD1E 又∵D1E平面AD1E ∴A1D⊥D1E 8分
(3)解:在△CED中,CD=2,,,CD2=CE2+DE2 ∴CE⊥DE,又∵D1D⊥平面ABCD CE平面ABCD ∴CE⊥D1D,又∵平面D1DE DE平面D1DE D1DDE=D[,∴CE⊥平面D1DE 又∵D1E⊥平面D1DE,∴CE⊥D1E.,∴∠D1ED是二面角D1―ED―D的一個(gè)平面角,在△D1ED中,∠D1DE=90°,D1D="1," DE= ,∴ ∴二面角D1―ED―D的正切值是 12分
考點(diǎn):1、直線和平面平行的判定;2、直線和平面垂直的判定;3、二面角的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面底面,且,設(shè)、分別為、的中點(diǎn).
(1)求證://平面;
(2)求證:面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,底面為直角梯形的四棱錐中,AD∥BC,平面, ,BC=6.
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在等腰梯形中,是梯形的高,,,現(xiàn)將梯形沿折起,使,且,得一簡(jiǎn)單組合體如圖所示,已知分別為的中點(diǎn).
(1)求證:平面;
(2)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,邊長(zhǎng)為2的正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將△、△ 分別沿、折起,使、兩點(diǎn)重合于點(diǎn),連接,.
(1)求證:; (2)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com