如圖,在三棱錐中,底面, 為的中點(diǎn),.
(1)求證:平面;
(2)求點(diǎn)到平面的距離。
(1)證明過程詳見解析;(2)點(diǎn)到平面的距離為.
解析試題分析:本題以三棱錐為幾何背景考查線面垂直的判斷和點(diǎn)到面的距離的求法,可以運(yùn)用傳統(tǒng)幾何法求解,突出考查空間想象能力和計算能力.第一問,先利用線面垂直平面,得到線線垂直,由等腰三角形,得,由上述兩個條件得平面;第二問,利用第一問可得面面,利用面面垂直的性質(zhì),得到的距離即為到面的距離,在直角三角形中,用等面積法表示.法二:第二問,等體積法求點(diǎn)面距離,,即,得.
試題解析:(1)因為平面,平面,
所以 2分
又因為在中,,為的中點(diǎn),
所以 4分
又平面,平面,且,
所以平面 6分
(2)法一:因為平面且平面
所以平面平面, 8分
又因為平面平面,
所以點(diǎn)到的距離即為點(diǎn)到平面的距離, 10分
在直角三角形中,由 11分
得 13分
所以點(diǎn)到平面的距離為 . 14分
法二:設(shè)點(diǎn)到平面的距離為, 據(jù) 8分
即,得 13分
所以點(diǎn)到平面的距離為 . 14分
考點(diǎn):1.線面垂直的判定定理;2.面面垂直的性質(zhì);3.等體
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱中,底面△為等腰直角三角形,,為棱上一點(diǎn),且平面⊥平面.
(Ⅰ)求證:為棱的中點(diǎn);(Ⅱ)為何值時,二面角的平面角為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,平面,四邊形為正方形,且,分別是線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐與四棱錐的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,邊長為2的正方形ABCD,E,F分別是AB,BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于.
(1)求證:⊥EF;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在斜三棱柱中,側(cè)面⊥底面,側(cè)棱與底面成的角,.底面是邊長為2的正三角形,其重心為點(diǎn),是線段上一點(diǎn),且.
(Ⅰ)求證://側(cè)面;
(Ⅱ)求平面與底面所成銳二面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,平面平面,,是等邊三角形,已知.
(1)設(shè)是上的一點(diǎn),證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn).
(Ⅰ)證明 平面EDB;
(Ⅱ)求EB與底面ABCD所成的角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=AB.
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com