分析 由題意可得雙曲線的漸近線方程和離心率,可得b=$\sqrt{3}$a,c=2a,由點到直線的距離公式可得p的方程,代入化簡可得p值,進而可得方程.
解答 解:由題意可得雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線為y=±$\frac{a}$x,
化為一般式可得bx±ay=0,離心率e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+^{2}}}{a}$=2,
解得b=$\sqrt{3}$a,∴c=$\sqrt{{a}^{2}+^{2}}$=2a,
又拋物線C2:x2=2py(p>0)故焦點到bx±ay=0的距離d=$\frac{\frac{ap}{2}}{\sqrt{{a}^{2}+^{2}}}$=$\frac{ap}{2c}$=2,
∴p=$\frac{4c}{a}$=8,
∴拋物線C2的方程為:x2=16y
故答案為:x2=16y
點評 本題考查雙曲線與拋物線的簡單性質,涉及離心率的應用和點到直線的距離公式,屬中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $({0,\frac{4}{3}}]$ | B. | $({\frac{4}{3},\frac{7}{3}}]$ | C. | $({\frac{7}{3},\frac{10}{3}}]$ | D. | $({\frac{10}{3},\frac{13}{3}}]$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com