【題目】已知函數(shù)()有極小值.
(1)求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在時(shí)有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)(2)或
【解析】【試題分析】(1)求得函數(shù)定義域后,對(duì)函數(shù)求導(dǎo)并令導(dǎo)數(shù)等于零,求出導(dǎo)函數(shù)的零點(diǎn),對(duì)分成兩類討論函數(shù)的單調(diào)區(qū)間,確定當(dāng)時(shí)符合題意.(2)令,將問題轉(zhuǎn)化為方程在時(shí)有唯一實(shí)根. 由(1)知函數(shù)在處取得最小值,令,利用導(dǎo)數(shù)求得在處取得最大值為,結(jié)合唯一實(shí)數(shù)根這一條件可求得的取值范圍.
【試題解析】
(1)函數(shù)定義域?yàn)?/span>, ,令,得,
當(dāng)時(shí),若,則;若,則,故在處取得極小值,
當(dāng)時(shí),若,則;若,則,故在處取得極大值.
所以實(shí)數(shù)的取值范圍是.
(2)函數(shù)在時(shí)有唯一零點(diǎn),即方程在時(shí)有唯一實(shí)根,
由(1)知函數(shù)在處取得最小值,
設(shè), ,令,有,
列表如下
1 | |||
正 | 0 | 負(fù) | |
增函數(shù) | 極大值 | 減函數(shù) |
故時(shí), ,
又時(shí), ; 時(shí), , ,
所以方程有唯一實(shí)根, 或,此時(shí)的取值范圍為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的焦點(diǎn)為(,0),(,0),且橢圓C過點(diǎn)M(4,1),直線l:不過點(diǎn)M,且與橢圓交于不同的兩點(diǎn)A,B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求證:直線MA,MB與x軸總圍成一個(gè)等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:的離心率為,過左焦點(diǎn)且斜率為的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,直線:交橢圓于兩點(diǎn).
(1)求橢圓的方程;
(2)求證:點(diǎn)在直線上;
(3)是否存在實(shí)數(shù),使得?若存在,求出的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請(qǐng)專業(yè)培訓(xùn)機(jī)構(gòu)進(jìn)行培訓(xùn).培訓(xùn)的總費(fèi)用由兩部分組成:一部分是給每位參加員工支付400元的培訓(xùn)材料費(fèi);另一部分是給培訓(xùn)機(jī)構(gòu)繳納的培訓(xùn)費(fèi).若參加培訓(xùn)的員工人數(shù)不超過30人,則每人收取培訓(xùn)費(fèi)1000元;若參加培訓(xùn)的員工人數(shù)超過30人,則每超過1人,人均培訓(xùn)費(fèi)減少20元.設(shè)公司參加培訓(xùn)的員工人數(shù)為x人,此次培訓(xùn)的總費(fèi)用為y元.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)請(qǐng)你預(yù)算:公司此次培訓(xùn)的總費(fèi)用最多需要多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)等比數(shù)列滿足,,數(shù)列滿足.
(1)求數(shù)列,的通項(xiàng)公式;
(2)令,求數(shù)列的前項(xiàng)和;
(3)若,且對(duì)所有的正整數(shù)都有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)家門前有一筆直公路直通長(zhǎng)城,星期天,他騎自行車勻速前往旅游,他先前進(jìn)了,覺得有點(diǎn)累,就休息了一段時(shí)間,想想路途遙遠(yuǎn),有些泄氣,就沿原路返回騎了, 當(dāng)他記起詩句“不到長(zhǎng)城非好漢”,便調(diào)轉(zhuǎn)車頭繼續(xù)前進(jìn). 則該同學(xué)離起點(diǎn)的距離與時(shí)間的函數(shù)關(guān)系的圖象大致為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在四棱錐中,底面,,,,,點(diǎn)為棱的中點(diǎn),
(1)試在棱上確定一點(diǎn),使平面平面,說明理由;
(2)若為棱上一點(diǎn),滿足,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)和圓,過的動(dòng)直線與圓交于、兩點(diǎn),過作直線,交于點(diǎn).
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)若不經(jīng)過的直線與軌跡交于兩點(diǎn),且.求證:直線 恒過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com