A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
分析 利用誘導(dǎo)公式和化簡(jiǎn),再求f($\frac{π}{3}$)的值.
解答 解:f(α)=$\frac{sin(2π-α)cos(\frac{π}{2}+α)}{cos(-\frac{π}{2}+α)tan(π+α)}$=$\frac{-sinα•(-sinα)}{sinα•tanα}$=$\frac{si{n}^{2}α}{sinα•\frac{sinα}{cosα}}=cosα$.
則f($\frac{π}{3}$)=cos$\frac{π}{3}$=$\frac{1}{2}$.
故選D.
點(diǎn)評(píng) 本題主要考察誘導(dǎo)公式的應(yīng)用,特殊角的計(jì)算,屬于基本知識(shí)的考查.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若A∈l,B∈l,且A∈α,B∈α,則l?α | |
B. | 若直線 a∩b=A,則直線a與直線b能確定一個(gè)平面 | |
C. | 任意三點(diǎn)A、B、C可以確定一個(gè)平面 | |
D. | 若P∈α∩β且α∩β=l,則P∈l |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 無(wú)法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com