分析 (1)利用向量的數(shù)量積公式、輔助角公式化簡函數(shù),即可求f(x)的最小正周期、對稱軸和對稱中心;
(2)設(shè)$x∈[-\frac{π}{3},\;\frac{π}{3}]$,由$-\frac{π}{2}≤2x-\frac{π}{3}≤\frac{π}{3}$得$-\frac{π}{12}≤x≤\frac{π}{3}$,即可求f(x)的單調(diào)遞增區(qū)間.
解答 解:(1)$f(x)=-\sqrt{3}({cos^2}x-{sin^2}x)+2sinx•cosx$=$-\sqrt{3}cos2x+sin2x=2sin(2x-\frac{π}{3})$----------(2分)
∴f(x)的最小正周期為$\frac{2π}{2}$=π----------(3分)
由$2x-\frac{π}{3}=kπ+\frac{π}{2}(k∈Z)$得,$x=\frac{1}{2}kπ+\frac{5}{12}π(k∈Z)$,
∴f(x)的對稱軸為$x=\frac{1}{2}kπ+\frac{5}{12}π(k∈Z)$----------(5分)
由$2x-\frac{π}{3}=kπ(k∈Z)$,得$x=\frac{1}{2}kπ+\frac{π}{6}(k∈Z)$,
∴f(x)的對稱中心為$({\frac{1}{2}kπ+\frac{π}{6},0})(k∈Z)$----------(7分)
(2)∵$-\frac{π}{3}≤x≤\frac{π}{3}$,∴$-π≤2x-\frac{π}{3}≤\frac{π}{3}$,
由$-\frac{π}{2}≤2x-\frac{π}{3}≤\frac{π}{3}$得$-\frac{π}{12}≤x≤\frac{π}{3}$,
∴f(x)的單調(diào)遞增區(qū)間為$[{-\frac{π}{12},\frac{π}{3}}]$-----------(12分)
點評 本題考查三角函數(shù)的圖象與性質(zhì),考查學生化簡能力,考查學生的計算能力,正確化簡是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,3) | B. | (3,4) | C. | (0,4) | D. | (-∞,3) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {4,5,6} | B. | {4,5} | C. | {3,4,5} | D. | {5,6,7} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com