在平面斜坐標系xoy中∠xoy=45°,點P的斜坐標定義為:“若
OP
=x0
e1
+y0
e2
(其中,
e1
,
e2
分別為與斜坐標系的x軸,y軸同方向的單位向量),則點P的坐標為(x0,y0)”.若F1(-1,0),F(xiàn)2(1,0)且動點M(x,y)滿足|
MF1
|=|
MF2
|,則點M在斜坐標系中的軌跡方程為( 。
A.x=0B.y=0C.
2
x+y=0
D.
2
x-y=0

設(shè)M(x,y),∵F1(-1,0),F(xiàn)2(1,0),
∴由定義知,
MF1
=-[(x+1)
e1
+y
e2
]
,
MF2
=-[(x-1)
e1
+y
e2
]
,
|
MF
1
|=|
MF
2
|
得:
|(x+1)
e1
+y
e2
|=|(x-1)
e1
+y
e2
|,
(x+1)2+y2+2(x+1)y×
2
2
=
(x-1)2+y2+2(x-1)y×
2
2
,
整理得:
2
x+y=0

故選C.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設(shè)橢圓的左右焦點為,上頂點為,點關(guān)于對稱,且
(1)求橢圓的離心率;
(2)已知是過三點的圓上的點,若的面積為,求點到直線距離的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)直線x+ky-1=0被圓O:x2+y2=2所截弦的中點的軌跡為M,則曲線M與直線x-y-1=0位置關(guān)系為( 。
A.相離B.相切C.相交D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,定點A和B都在平面α內(nèi),定點P∉α,PB⊥α,C是α內(nèi)異于A和B的動點,且PC⊥AC.那么,動點C在平面α內(nèi)的軌跡是( 。
A.一條線段,但要去掉兩個點
B.一個圓,但要去掉兩個點
C.一個橢圓,但要去掉兩個點
D.半圓,但要去掉兩個點

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在同一直角坐標系中,經(jīng)過伸縮變換
x′=5x
y′=3y
后,曲線C變?yōu)榍x′2+y′2=1,則曲線C的方程為( 。
A.25x2+9y2=1B.9x2+25y2=1C.25x+9y=1D.
x2
25
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)直線y=ax+b與雙曲線3x2-y2=1交于A、B,且以AB為直徑的圓過原點,求點P(a,b)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線
x2
2
-y2=1
的左、右頂點分別為A1,A2,點P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個動點.
(1)求直線A1P與A2Q交點的軌跡E的方程;
(2)若過點H(0,h)(h>1)的兩條直線l1和l2與軌跡E都只有一個交點,且l1⊥l2,求h的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在圓x2+y2=4上任取一點P,過點P作x軸的垂線段PD,D為垂足.當點P在圓上運動時,線段PD的中點M的軌跡是( 。
A.橢圓B.雙曲線C.拋物線D.圓

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線l:y=mx+1與曲線C:ax2+y2=2(m、a∈R)交于A、B兩點,O為坐標原點.
(1)當m=0時,有∠AOB=
π
3
,求曲線C的方程;
(2)當實數(shù)a為何值時,對任意m∈R,都有
OA
OB
為定值T?指出T的值;
(3)已知點M(0,-1),當a=-2,m變化時,動點P滿足
MP
=
OA
+
OB
,求動點P的縱坐標的變化范圍.

查看答案和解析>>

同步練習冊答案