4.設m=1+2b,n=1+2-b,那么n=( 。
A.$\frac{m+1}{m-1}$B.$\frac{m-1}{m}$C.$\frac{m-1}{m+1}$D.$\frac{m}{m-1}$

分析 推導出n=1+$\frac{1}{{2}^}$,2b=m-1,由此能求出結果.

解答 解:∵m=1+2b,n=1+2-b,
∴n=1+$\frac{1}{{2}^}$=1+$\frac{1}{m-1}$=$\frac{m}{m-1}$.
故選:D.

點評 本題考查有理數(shù)性質(zhì)、運算法則,考查推理論證能力、運算求解能力,考查化歸與轉化思想,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,圓錐的橫截面為等邊三角形SAB,O為底面圓圓心,Q為底面圓周上一點.
(Ⅰ)如果BQ的中點為C,OH⊥SC,求證:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,設二面角A-SB-Q的大小為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.拋物線C:y2=8x的焦點為F,準線為l,P是l上一點,連接..并延長交拋物線C于點Q,若|PF|=$\frac{4}{5}$|PQ|,則|QF|=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}滿足a1=1,|an+1-an|=pn,n∈N*.
(1)若p=1,寫出a4所有可能的值;
(2)若數(shù)列{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(3)若p=$\frac{1}{2}$,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,圓錐的底面圓心為O,直徑為AB,C為半圓弧AB的中點,E為劣弧CB的中點,且AB=2PO=2$\sqrt{2}$.
(1)求異面直線PC與OE所成的角的大小;
(2)求二面角P-AC-E的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.己知函數(shù)f(x)=lnx+x2-3x+2.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:對任意n∈N*,都有l(wèi)n(1+n)>$\sum_{i=1}^{n}\frac{1-1}{{i}^{2}}$成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知點O是△ABC的內(nèi)心,∠BAC=30°,BC=1,則△BOC面積的最大值為$\frac{1}{4}$cot52.5°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=(2x2+x)lnx-(2a+1)x2-(a+1)x+b(a,b∈R).
(Ⅰ)當a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)≥0恒成立,求b-a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=xlnx,g(x)=x+$\frac{1}{ax}$(x>0)都在x=x0處取得最小值.
(1)求f(x0)-g(x0)的值.
(2)設函數(shù)h(x)=f(x)-g(x),h(x)的極值點之和落在區(qū)間(k,k+1),k∈N,求k的值.

查看答案和解析>>

同步練習冊答案