分析 根據(jù)三角形內(nèi)角和定理求出∠ACB+∠ABC,求出∠OBC+∠OCB=$\frac{1}{2}$(∠ABC+∠ACB),求出∠OBC+∠OCB的度數(shù),根據(jù)三角形的內(nèi)角和定理求出∠BOC,由余弦定理,基本不等式可求OB•OC≤$\frac{1}{2(1-cos105°)}$,進(jìn)而利用三角形面積公式即可計算得解.
解答 解:∵∠BAC=30°,
∴∠ABC+∠ACB=180°-30°=150°,
∵點(diǎn)O是△ABC的內(nèi)心,
∴∠OBC=$\frac{1}{2}$∠ABC,∠OCB=$\frac{1}{2}$∠ACB,
∴∠OBC+∠OCB=$\frac{1}{2}$(∠ABC+∠ACB)=$\frac{1}{2}$×150°=75°,
∴∠BOC=180°-75°=105°.
∵BC=1,
∴由余弦定理可得:1=OB2+OC2-2•OB•OC•cos105°≥2OB•OC-2•OB•OC•cos105°,整理可得:OB•OC≤$\frac{1}{2(1-cos105°)}$,
∴S△OBC=$\frac{1}{2}$OB•OC•sin105°≤$\frac{1}{2}×$$\frac{1}{2(1-cos105°)}$×sin105°=$\frac{sin105°}{4(1-cos105°)}$=$\frac{cos52.5°}{4sin52.5°}$=$\frac{1}{4}$cot52.5°.
故答案為:$\frac{1}{4}$cot52.5°.
點(diǎn)評 本題考查了三角形的內(nèi)角和定理,余弦定理,基本不等式,三角形面積公式,三角形的內(nèi)切圓與內(nèi)心的應(yīng)用,關(guān)鍵是求出∠OBC+∠OCB的度數(shù),題目比較典型,難度適中.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | -$\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{m+1}{m-1}$ | B. | $\frac{m-1}{m}$ | C. | $\frac{m-1}{m+1}$ | D. | $\frac{m}{m-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 純虛數(shù) | B. | 實數(shù) | C. | 虛數(shù) | D. | 以上都有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{24}{143}$ | B. | $\frac{1}{143}$ | C. | $\frac{24}{13}$ | D. | $\frac{6}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
月收入(單位:百元) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) | [60,70) |
頻數(shù) | 5 | 20 | 30 | 31 | 10 | 4 |
贊成人數(shù) | 2 | 14 | 24 | 30 | 7 | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com