9.設(shè)f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求正實(shí)數(shù)a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),通過討論a的范圍,求出函數(shù)g(x)的單調(diào)區(qū)間即可;
(2)通過討論a的范圍,得到函數(shù)f(x)的單調(diào)區(qū)間,結(jié)合函數(shù)的極大值,求出a的范圍即可.

解答 解:(1)由f′(x)=ln x-2ax+2a,
可得g(x)=ln x-2ax+2a,x∈(0,+∞),
所以g′(x)=$\frac{1}{x}$-2a=$\frac{1-2ax}{x}$,
當(dāng)a≤0,x∈(0,+∞)時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增;
當(dāng)a>0,x∈(0,$\frac{1}{2a}$)時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增,
x∈($\frac{1}{2a}$,+∞)時(shí),g′(x)<0,函數(shù)g(x)單調(diào)遞減.
所以當(dāng)a≤0時(shí),g(x)的單調(diào)增區(qū)間為(0,+∞);
當(dāng)a>0時(shí),g(x)的單調(diào)增區(qū)間為(0,$\frac{1}{2a}$),單調(diào)減區(qū)間為($\frac{1}{2a}$,+∞).…(6分)
(2)由(1)知,f′(1)=0.
①當(dāng)0<a<$\frac{1}{2}$時(shí),$\frac{1}{2a}$>1,由(1)知f′(x)在(0,$\frac{1}{2a}$)內(nèi)單調(diào)遞增,
可得當(dāng)x∈(0,1)時(shí),f′(x)<0,當(dāng)x∈(1,$\frac{1}{2a}$)時(shí),f′(x)>0.
所以f(x)在(0,1)內(nèi)單調(diào)遞減,在(1,$\frac{1}{2a}$)內(nèi)單調(diào)遞增,
所以f(x)在x=1處取得極小值,不合題意.
②當(dāng)a=$\frac{1}{2}$時(shí),$\frac{1}{2a}$=1,f′(x)在(0,1)內(nèi)單調(diào)遞增,在(1,+∞)內(nèi)單調(diào)遞減,
所以當(dāng)x∈(0,+∞)時(shí),f′(x)≤0,f(x)單調(diào)遞減,不合題意.
③當(dāng)a>$\frac{1}{2}$時(shí),0<$\frac{1}{2a}$<1,當(dāng)x∈($\frac{1}{2a}$,1)時(shí),f′(x)>0,f(x)單調(diào)遞增,
當(dāng)x∈(1,+∞)時(shí),f′(x)<0,f(x)單調(diào)遞減.
所以f(x)在x=1處取極大值,符合題意.
綜上可知,正實(shí)數(shù)a的取值范圍為($\frac{1}{2}$,+∞).…(12分)

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知命題p:f(x)=lnx+2x2+6mx+1在(0,+∞)上單調(diào)遞增,q:m≥-5,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓C過P(2,6),Q(-2,2)兩點(diǎn),且圓心C在直線3x+y=0上.
(1)求圓C的方程.
(2)若直線l過點(diǎn)P(0,5)且被圓C截得的線段長(zhǎng)為4$\sqrt{3}$,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\sqrt{3}sin\frac{π}{k}x(k>0)$圖象上相鄰的最大值點(diǎn)和最小值點(diǎn)都在曲線x2+y2=k2上,則f(x)的最小正周期為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(文科)設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}x,x<1\\{x^3}-\frac{1}{x}+1,x≥1\end{array}\right.$,則$f(\frac{1}{f(2)})$=$\frac{2}{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知甲、乙、丙3類產(chǎn)品共1200件,且甲、乙、丙三類產(chǎn)品的數(shù)量之比為3:4:5,現(xiàn)采用分層抽樣的方法抽取60件,則乙類產(chǎn)品抽取的件數(shù)是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{{{e^x}-a}}{x}({x∈R})$.
(1)若函數(shù)f(x)在x=1時(shí)取得極值,求實(shí)數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間[2,4]上是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}{y≤x}\\{3y≥x}\\{x+y≤4}\end{array}\right.$,且z=-2x+y,則z的最小值是-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.對(duì)于無窮數(shù)列{xn}和函數(shù)f(x),若xn+1=f(xn)(n∈N+),則稱f(x)是數(shù)列{xn}的母函數(shù).
(Ⅰ)定義在R上的函數(shù)g(x)滿足:對(duì)任意α,β∈R,都有g(shù)(αβ)=αg(β)+βg(α),且$g({\frac{1}{2}})=1$;又?jǐn)?shù)列{an}滿足${a_n}=g({\frac{1}{2^n}})$.
(1)求證:f(x)=x+2是數(shù)列{2nan}的母函數(shù);
(2)求數(shù)列{an}的前項(xiàng)n和Sn
(Ⅱ)已知$f(x)=\frac{2016x+2}{x+2017}$是數(shù)列{bn}的母函數(shù),且b1=2.若數(shù)列$\left\{{\frac{{{b_n}-1}}{{{b_n}+2}}}\right\}$的前n項(xiàng)和為Tn,求證:$25({1-{{0.99}^n}})<{T_n}<250({1-{{0.999}^n}})({n≥2})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案