A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 命題p:f′(x)=$\frac{1}{x}$+4x+6m,由f(x)=lnx+2x2+6mx+1,在(0,+∞)上單調(diào)遞增,$\frac{1}{x}$+4x+6m≥0,化為:6m≥-4x-$\frac{1}{x}$=g(x),利用導(dǎo)數(shù)研究其單調(diào)性極值與最值,可得m的取值范圍,即可判斷出結(jié)論.
解答 解:命題p:f′(x)=$\frac{1}{x}$+4x+6m,由f(x)=lnx+2x2+6mx+1,在(0,+∞)上單調(diào)遞增,
∴$\frac{1}{x}$+4x+6m≥0,化為:6m≥-4x-$\frac{1}{x}$=g(x),
g′(x)=-4+$\frac{1}{{x}^{2}}$=$\frac{-4(x+\frac{1}{2})(x-\frac{1}{2})}{{x}^{2}}$,可得:當(dāng)x=$\frac{1}{2}$時,函數(shù)g(x)取得極大值即最大值,g($\frac{1}{2}$)=-4,
∴m≥-$\frac{2}{3}$.
∴p是q的充分不必要條件.
故選:A.
點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究其單調(diào)性極值與最值、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 10 | D. | 與m有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,1] | B. | (-∞,-1]∪[1,+∞) | C. | (-1,1] | D. | (-∞,-1)∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com