19.已知命題p:f(x)=lnx+2x2+6mx+1在(0,+∞)上單調(diào)遞增,q:m≥-5,則p是q的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 命題p:f′(x)=$\frac{1}{x}$+4x+6m,由f(x)=lnx+2x2+6mx+1,在(0,+∞)上單調(diào)遞增,$\frac{1}{x}$+4x+6m≥0,化為:6m≥-4x-$\frac{1}{x}$=g(x),利用導(dǎo)數(shù)研究其單調(diào)性極值與最值,可得m的取值范圍,即可判斷出結(jié)論.

解答 解:命題p:f′(x)=$\frac{1}{x}$+4x+6m,由f(x)=lnx+2x2+6mx+1,在(0,+∞)上單調(diào)遞增,
∴$\frac{1}{x}$+4x+6m≥0,化為:6m≥-4x-$\frac{1}{x}$=g(x),
g′(x)=-4+$\frac{1}{{x}^{2}}$=$\frac{-4(x+\frac{1}{2})(x-\frac{1}{2})}{{x}^{2}}$,可得:當(dāng)x=$\frac{1}{2}$時,函數(shù)g(x)取得極大值即最大值,g($\frac{1}{2}$)=-4,
∴m≥-$\frac{2}{3}$.
∴p是q的充分不必要條件.
故選:A.

點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究其單調(diào)性極值與最值、不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.△ABC的內(nèi)角A,B,C的對邊分別為,且2acosC=2b-c.
(1)求A的大。
(2)若△ABC為銳角三角形,求sinB+sinC的取值范圍;
(3)若$a=2\sqrt{3}$,且△ABC的面積為$2\sqrt{3}$,求cos2B+cos2C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)$f(x)=lg({\frac{2}{1-x}+a})$是奇函數(shù),則使f(x)>1的x的取值范圍是$({\frac{9}{11}.1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線$\frac{{x}^{2}}{m+5}$-$\frac{{y}^{2}}{20-m}$=1的焦距是( 。
A.4B.6C.10D.與m有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,若直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=cosα}\\{y={y}_{0}+tsinα}\end{array}\right.$(t為參數(shù),α為l的傾斜角),曲線E的極坐標(biāo)方程為ρ=4sinθ.射線θ=β,θ=β+$\frac{π}{4}$,θ=β-$\frac{π}{4}$與曲線E分別交于不同于極點(diǎn)的三點(diǎn)A、B、C.
(1)求證:|OB|+|OC|=$\sqrt{2}$|OA|;
(2)當(dāng)β=$\frac{7π}{12}$時,直線l過B、C兩點(diǎn),求y0與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式$\frac{1-x}{x+1}≤0$的解集是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-1,1]D.(-∞,-1)∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線l1:x-2y+1=0與l2:2x+ay-2=0平行,則l1與l2的距離為(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足2cos C(a cos B+b cos A )=c.
①求C;    
②若c=$\sqrt{7}$,ab=6.
求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案