已知tanα=m,則
sin(α+3π)+cos(π+α)
sin(-α)-cos(π+α)
=
 
考點:同角三角函數(shù)基本關系的運用
專題:計算題,三角函數(shù)的求值
分析:由誘導公式化簡代入已知即可求值.
解答: 解:
sin(α+3π)+cos(π+α)
sin(-α)-cos(π+α)

=
-sinα-cosα
-sinα+cosα

=
-tanα-1
-tanα+1

=
-m-1
1-m

故答案為:
-m-1
1-m
點評:本題主要考查了同角三角函數(shù)基本關系的運用,誘導公式的應用,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,E為AD上一點,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE,F(xiàn)為PC上一點,且CF=2FP. 
(Ⅰ)求證:PA∥平面BEF;
(Ⅱ)求三棱錐P-ABF與三棱錐F-EBC的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求傾斜角為45°,且與點(2,-1)的距離為
2
2
的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題甲:若x,y∈R,則|x|>1是x>1是充分而不必要條件;命題乙:函數(shù)y=
|x-1|-2
的定義域是(-∞,-1]∪[3,+∞),則( 。
A、“甲或乙”為假
B、“甲且乙”為真
C、甲真乙假
D、甲假乙真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=x5+ax3+btanx-8,f(-2)=10,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若三棱錐三個側面兩兩垂直,則它的側面與底面所成的二面角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:f(x)=x3-ax+a,若過曲線C外一點A(1,0)引曲線C的兩條切線,它們的傾斜角互補,則a的值為( 。
A、
27
8
B、-2
C、2
D、-
27
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
(a-3)x+2,x≤1
-x2+(a2-4)x-8,x>1
是單調遞減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x3-x2-4x+4(x∈R)在區(qū)間(1,2)內的零點個數(shù).

查看答案和解析>>

同步練習冊答案