6.已知數(shù)列{an}的首項(xiàng)a1=$\frac{3}{5}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n=1,2,….
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$-1}為等比數(shù)列;
(2)記Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$,若Sn<100,求最大正整數(shù).

分析 (1)an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,取倒數(shù)可得$\frac{1}{{a}_{n+1}}$=$\frac{2}{3}$+$\frac{1}{3{a}_{n}}$,變形為$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{3}$$(\frac{1}{{a}_{n}}-1)$,即可證明.
(2)由(1)知,$\frac{1}{{a}_{n}}$=2×$(\frac{1}{3})^{n}$+1,再利用等比數(shù)列的求和公式、數(shù)列的單調(diào)性即可得出.

解答 (1)證明:∵an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,∴$\frac{1}{{a}_{n+1}}$=$\frac{2}{3}$+$\frac{1}{3{a}_{n}}$,可得$\frac{1}{{a}_{n+1}}$-1=$\frac{1}{3}$$(\frac{1}{{a}_{n}}-1)$,
又∵$\frac{1}{{a}_{1}}$-1=$\frac{2}{3}$≠0,
∴數(shù)列{$\frac{1}{{a}_{n}}$-1}為等比數(shù)列,首項(xiàng)為$\frac{2}{3}$,公比為$\frac{1}{3}$.
(2)解:由(1)知,$\frac{1}{{a}_{n}}$-1=$\frac{2}{3}×(\frac{1}{3})^{n-1}$,∴$\frac{1}{{a}_{n}}$=2×$(\frac{1}{3})^{n}$+1,
∴Sn=$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$=2×$\frac{\frac{1}{3}[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}$+n=1-$(\frac{1}{3})^{n}$+n,
由Sn<100,則n+1-$\frac{1}{3n}$<100,所以nmax=99.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.與圓x2+(y-2)2=2相切,且在兩坐標(biāo)軸上的截距相等的直線方程為y=±x或y=-x+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.(x+y+3)3展開式中不含y的各項(xiàng)系數(shù)之和為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<π)為偶函數(shù),且函數(shù)圖象的相鄰兩條對稱軸間的距離為$\frac{π}{2}$
(1)求f($\frac{π}{8}$)
(2)求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2-$\frac{1}{2}$x+c(a,c∈R)滿足條件:①f(1)=0;②對一切x∈R,都有f(x)≥0
(1)求a、c的值;
(2)若存在實(shí)數(shù)m,使函數(shù)g(x)=f(x)-mx在區(qū)間[m,m+2]上有最小值-5,求出實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.?dāng)?shù)列{an},a1=2,an=2an-1+2n(n≥2)
(I)求證數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}是等差數(shù)列;
(II)求數(shù)列{an}的前n項(xiàng)和Sn;
(III)若bn=$\frac{2n-1}{{a}_{n}}$,求證數(shù)列{bn}為遞減數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知等腰△OAB中,|OA|=|OB|=2且$|{\overrightarrow{OA}+\overrightarrow{OB}}|≥\frac{{\sqrt{3}}}{3}|{\overrightarrow{AB}}|$,那么$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍是[-2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某班主任對全班50名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多總數(shù)
喜歡玩電腦游戲18927
不喜歡玩電腦游戲81523
總數(shù)262450
則認(rèn)為喜歡玩電腦游戲與認(rèn)為作業(yè)量的多少有關(guān)系的把握大約為( 。
A.99%B.95%C.90%D.無充分依據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow a,\;\overrightarrow b,\;\overrightarrow c$是同一平面內(nèi)的三個向量,其中$\overrightarrow a=({1,\;2})$.
(1)若$|{\overrightarrow c}|=2\sqrt{5}$,且向量$\overrightarrow c$與向量$\overrightarrow a$反向,求$\overrightarrow c$的坐標(biāo);
(2)若$|{\overrightarrow b}|=\frac{{\sqrt{5}}}{2}$,且$(\overrightarrow a+2\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=\frac{15}{4}$,求$\overrightarrow a$在$\overrightarrow b$方向上的射影.

查看答案和解析>>

同步練習(xí)冊答案