已知點P為橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的點(非x軸上的兩端點),F(xiàn)1,F(xiàn)2為焦點,A為△PF1F2的內(nèi)心,PA的延長線交F1F2于點B,那么|BA|:|AP|的值為( 。
A、
b
a
B、
c
a
C、
a
b
D、
a
c
考點:橢圓的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:連接AF1,AF2,在三角形PBF1,PBF2中運用內(nèi)角平分線定理,再由比例的性質(zhì)和橢圓的定義,即可得到所求比值.
解答: 解:由于A為△PF1F2的內(nèi)心,
連接AF1,AF2,
則由三角形的內(nèi)角平分線定理,可得
|BA|
|AP|
=
|BF1|
|PF1|
,
|BA|
|AP|
=
|BF2|
|PF2|
,
|BA|
|AP|
=
|BF1|+|BF2|
|PF1|+|PF2|

則由橢圓的定義,可得,
|PF1|+|PF2|=2a,
又|BF1|+|BF2|=2c,
|BA|
|AP|
=
2c
2a
=
c
a

故選B.
點評:本題考查橢圓的定義的運用,考查內(nèi)角平分線定理的運用,考查運算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知正三棱柱ABC-A1B1C1的各棱長都為a,P為A1B上的點.
(1)試確定
A1P
PB
的值,使得PC⊥AB;
(2在直線A1B上找一點P使二面角P-AC-B的大小為60°,求
A1P
PB
的值;
(3)在(2)條件下,求C1到平面PAC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點,左、右頂點A1、A2在x軸上,離心率為e1=
21
3
的雙曲線C1經(jīng)過點P(6,6).
(1)求雙曲線C1的標準方程;
(2)若橢圓C2以A1、A2為左、右焦點,離心率為e2,且e1、e2為方程x2+mx+
21
5
=0的兩實根,求橢圓C2的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體的全面積為24,它的頂點都在球面上,則這個球的體積是( 。
A、12π
B、4
3
π
C、4π
D、
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=x3+ax2+(a+6)x+1有極大值和極小值,則實數(shù)a的取值范圍是( 。
A、(-1,2)
B、(-∞,-3)∪(6,+∞)
C、(-3,6)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)g(x)=log2x,關(guān)于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)內(nèi)有三個不同實數(shù)解則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)p:函數(shù)f(x)=lg(ax2-4x+a)的定義域為R;q:設(shè)
a
=(2x2+x  ,-1),
b
=(1  , ax+2)
,不等式
a
b
>0
對?x∈(-∞,-1)上恒成立,如果命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的一元二次不等式(a-2)x2+2
b-1
x+1>0的解集為R,若a≤4,則
a2+2ab
a2+b2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)的資金每一年都比上一年分紅后的資金增加一倍,并且每年年底固定給股東們分紅500萬元.該企業(yè)2008年年底分紅后的資金為1000萬元,
(1)求該企業(yè)2012年年底分紅后的資金;
(2)求該企業(yè)到哪一年年底分紅后的資金超過32500萬元.

查看答案和解析>>

同步練習冊答案