【題目】在四棱錐中,底面ABCD為菱形,,側(cè)面為等腰直角三角形,,,點E為棱AD的中點.

1)求證:平面ABCD;

2)求直線AB與平面PBC所成角的正弦值.

【答案】(1)證明見解析,(2)

【解析】

1)題中易得,,利用勾股定理可得,從而可證得線面垂直;

2)以E為原點,EAx軸,EBy軸,EPz軸,建立空間直角坐標系,用空間向量法求線面角的正弦值.

1)證明:在四棱錐中,底面ABCD為菱形,

側(cè)面為等腰直角三角形,,點E為棱AD的中點.

,,,,

,,

,平面ABCD

2)以E為原點,EAx軸,EBy軸,EPz軸,建立空間直角坐標系,

0,0,,

,,

設(shè)平面PBC的法向量y,

,取,得1,,

設(shè)直線AB與平面PBC所成角為,

直線AB與平面PBC所成角的正弦值為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在側(cè)棱垂直于底面的三棱柱中,,為側(cè)面的對角線的交點,,分別是,中點

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

(1)當時,求的極值;

(2)若有2個不同零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)為了提高小區(qū)內(nèi)人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需要看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)看書人員進行年齡調(diào)查,隨機抽取了一天40名讀書者進行調(diào)查. 將他們的年齡分成6段:

,

后得到如圖所示的頻率分布直方圖,問:

1)在40名讀書者中年齡分布在的人數(shù);

2)估計40名讀書者年齡的平均數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,設(shè).

(Ⅰ)若處取得極值,,求函數(shù)的單調(diào)區(qū)間

(Ⅱ)若時函數(shù)有兩個不同的零點、.

的取值范圍;②求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一元線性同余方程組問題最早可見于中國南北朝時期(公元世紀)的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”問題,原文如下:有物不知數(shù),三三數(shù)之剩二,五五數(shù)之剩三,問物幾何?即,一個整數(shù)除以三余二,除以五余三,求這個整數(shù).設(shè)這個整數(shù)為,當時,符合條件的共有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面是菱形,.

(1)求證:;

(2)若的中點,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,,已知有三個互不相等的零點,且.

(Ⅰ)若.(ⅰ)討論的單調(diào)區(qū)間;(ⅱ)對任意的,都有成立,求的取值范圍;

(Ⅱ)若,設(shè)函數(shù),處的切線分別為直線,,是直線,的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,的中點,為等邊三角形,是棱上的一點,設(shè)不重合).

1)當時,求三棱錐的體積;

2)若平面,求的值.

查看答案和解析>>

同步練習(xí)冊答案