2.設(shè)a>0,b>0,$\sqrt{2}$是a與b的等比中項,logax=logby=3,則$\frac{1}{x}+\frac{1}{y}$的最小值為$\frac{\sqrt{2}}{2}$.

分析 運用等比數(shù)列中項的性質(zhì),可得ab=2,由對數(shù)的定義可得xy,再由基本不等式可得最小值.

解答 解:設(shè)a>0,b>0,$\sqrt{2}$是a與b的等比中項,
可得ab=2,
由logax=logby=3可得x=a3,y=b3,
xy=(ab)3=8,
且x>0,y>0,
由$\frac{1}{x}+\frac{1}{y}$≥2$\sqrt{\frac{1}{xy}}$=2$\sqrt{\frac{1}{8}}$=$\frac{\sqrt{2}}{2}$.
當(dāng)且僅當(dāng)x=y=2$\sqrt{2}$時,取得等號.
即有$\frac{1}{x}+\frac{1}{y}$的最小值為$\frac{{\sqrt{2}}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點評 本題考查基本不等式的運用:求最值,考查等比數(shù)列的中項的性質(zhì),考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=(x-x3)•2|x|在區(qū)間[-3,3]上的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.2016年是紅軍長征勝利80周年,某市電視臺舉辦紀(jì)念紅軍長征勝利80周年知識問答,宣傳長征精神,首先在甲、乙、丙、丁四個不同的公園進行支持簽名活動.
公園
獲得簽名人數(shù)45603015
然后再各公園簽名的人中按分層抽樣的方式抽取10名幸運之星回答問題,從10個關(guān)于長征的問題中隨機抽取4個問題讓幸運之星回答,全部答對的幸運之星獲得一份紀(jì)念品.
(1)求此活動中各公園幸運之星的人數(shù);
(2)若乙公園中每位幸運之星中任選兩人接受電視臺記者的采訪,求這兩人均來自乙公園的概率;
(3)電視臺記者對乙公園的簽名人進行了是否有興趣研究“紅軍長征”歷史的問卷調(diào)查,統(tǒng)計結(jié)果如下(單位:人):
有興趣無興趣合計
25530
151530
合計402060
據(jù)此判斷能否在犯錯誤的概率不超過0.01的前提下認為有興趣研究“紅軍長征”歷史與性別有關(guān).
臨界值表:
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
參考公式:K2=$\frac{k(ad-bc)}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=(x+1)2-alnx.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)在區(qū)間(0,+∞)內(nèi)任取兩個不相等的實數(shù)x1,x2,不等式$\frac{{f({x_1}+1)-f({x_2}\;+1)}}{{{x_1}-{x_2}}}>1$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在平面直角坐標(biāo)系中,已知頂點$A(0,-\sqrt{2})$、$B(0,\sqrt{2})$,直線PA與直線PB的斜率之積為-2,則動點P的軌跡方程為(  )
A.$\frac{y^2}{2}+{x^2}$=1B.$\frac{y^2}{2}+{x^2}$=1(x≠0)C.$\frac{y^2}{2}-{x^2}$=1D.$\frac{y^2}{2}+{x^2}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(x-1)2-$\frac{x}{e^x}$.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)有兩個零點x1,x2,證明x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)a=($\frac{1}{2}$)${\;}^{\frac{3}{2}}$,b=lnπ,c=log0.5$\frac{3}{2}$,則(  )
A.c<a<bB.a<c<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖是一名籃球運動員在五場比賽中所得分?jǐn)?shù)的莖葉圖,則該運動員在這五場比賽中得分的平均數(shù)、中位數(shù)分別為(  )
A.14,12B.12,14C.14,10D.10,12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知x>0,若(x-i)2是純虛數(shù)(其中i為虛數(shù)單位),則x=1.

查看答案和解析>>

同步練習(xí)冊答案