如圖,已知AA1與BB1是異面直線,且AA1=2,BB1=1,AB⊥BB1,A1B1⊥BB1,則AA1與BB1所成的角為( 。
A.30°B.45°C.60°D.90°

設(shè)AA1與BB1所成的角為θ,由兩個(gè)向量的數(shù)量積的定義可得
AA1
BB1
=1×2 cosθ.
AA1
BB1
=(
AB
+
BB1
+
B1A1
)•(BB1)=0+
BB1
2
+0=1,
故1×2 cosθ=1,∴cosθ=
1
2
,故θ=60°,
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,將Rt△ABC沿斜邊上的高AD折成1200的二面角C-AD-,若直角邊AB=,AC=,則二面角A-B-D的正切值為(   )
A.B.
C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,PB與平面ABC成60°的角,底面ABCD是直角梯形,∠ABC=∠BAD=90°,AB=BC=
1
2
AD.
(1)求證:平面PCD⊥平面PAC;
(2)設(shè)E是棱PD上一點(diǎn),且PE=
1
3
PD,求異面直線AE與PB所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為8,側(cè)棱長(zhǎng)為6,D為AC中點(diǎn).
(1)求證:AB1平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)正方體ABCD-A1B1C1D1的頂點(diǎn)A作直線L,使L與棱AB,AD,AA1所成的角都相等,這樣的直線L可以作(  )
A.1條B.2條C.3條D.4條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),AO⊥平面BCD,CA=CB=CD=BD=2.
(1)求證:面ABD⊥面AOC;
(2)求異面直線AE與CD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知長(zhǎng)方體ABCD-A1B1C1D1中,A1A=AB,E、F分別是BD1和AD中點(diǎn).
(1)求異面直線CD1、EF所成的角;
(2)證明EF是異面直線AD和BD1的公垂線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,直三棱柱ABC-A1B1C1,AC⊥BC,且CA=CC1=2CB,則直線BC1與直線AB1所成角的余弦值為( 。
A.
5
5
B.
5
3
C.
2
5
5
D.
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知平面αβ,A,C∈α,B,D∈β,AB⊥CD,且AB=2,直線AB與平面α所成的角為60°,則線段CD長(zhǎng)的取值范圍為( 。
A.[2,+∞)B.[2C.[2
3
,+∞)
D.[2
3
,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案