精英家教網 > 高中數學 > 題目詳情

【題目】隨著手機的發(fā)展,“微信”逐漸成為人們支付購物的一種形式.某機構對“使用微信支付”的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數分布及對“使用微信支付”贊成人數如下表.

年齡

(單位:歲)

,

,

,

,

,

頻數

5

10

15

10

5

5

贊成人數

5

10

12

7

2

1

(Ⅰ)若以“年齡45歲為分界點”,由以上統計數據完成下面列聯表,并判斷是否有99%的把握認為“使用微信支付”的態(tài)度與人的年齡有關;

年齡不低于45歲的人數

年齡低于45歲的人數

合計

贊成

不贊成

合計

(Ⅱ)若從年齡在的被調查人中按照贊成與不贊成分層抽樣,抽取5人進行追蹤調查,在5人中抽取3人做專訪,求3人中不贊成使用微信支付的人數的分布列和期望值.

參考數據:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

【答案】(Ⅰ)詳見解析;(Ⅱ)詳見解析.

【解析】

(Ⅰ)根據頻數分布表補全列聯表,代入公式可求得,從而可知有的把握;(Ⅱ)根據分層抽樣的方法可知抽取的人中,支持微信支付人,不支持微信支付人,根據超幾何分布的特點求得分布列和數學期望.

(Ⅰ)由頻數分布表得列聯表如下:

年齡不低于45歲的人數

年齡低于45歲的人數

合計

贊成

不贊成

13

合計

的把握認為“使用微信交流”的態(tài)度與人的年齡有關

(Ⅱ)年齡在中支持微信支付人,不支持微信支付6

由分層抽樣方法可知:抽取的人中,支持微信支付人,不支持微信支付

人中不支持微信支付的人數為,則所有可能的取值為:

,,

的分布列為:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】長方形中,中點(圖1.沿折起,使得(圖2)在圖2:

1)求證:平面平面;

2)在線段上是否存點,使得二面角的余弦值為,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】幾位大學生響應國家的創(chuàng)業(yè)號召,開發(fā)了一款應用軟件.為激發(fā)大家學習數學的興趣,他們推出了解數學題獲取軟件激活碼的活動.這款軟件的激活碼為下面數學問題的答案:已知數列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項是20,接下來的兩項是20,21,再接下來的三項是20,21,22依此類推.求滿足如下條件的最小整數NN>100且該數列的前N項和為2的整數冪.那么該款軟件的激活碼是

A. 440B. 330

C. 220D. 110

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論函數的單調性;

(2)若,,且存在不相等的實數,,使得,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點分別為,,點在橢圓上,且的周長為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點的坐標為,不過原點的直線與橢圓相交于,兩點,設線段的中點為,點到直線的距離為,且,,三點共線,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C1ab0),橢圓C上的點到焦點距離的最大值為9,最小值為1

1)求橢圓C的標準方程;

2)求橢圓C上的點到直線l4x5y+400的最小距離?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】十三屆全國人大二次會議于201935日在京召開.為了了解某校大學生對兩會的關注程度,學校媒體在開幕后的第二天,從學生中隨機抽取了180人,對是否收看2019年兩會開幕會情況進行了問卷調查,統計數據得到列聯表如下:

收看

沒收看

合計

男生

40

女生

30

60

合計

1)請完成列聯表;

2)根據上表說明,能否有99%的把握認為該校大學生收看開幕會與性別有關?(結果精確到0.001

附:,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中,邊,,所在直線的方程分別為,.

1)求邊上的高所在的直線方程;

2)若圓過直線上一點及點,當圓面積最小時,求其標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)討論的單調性;

2)當存在三個不同的零點時,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案