4.已知三個(gè)向量$\overrightarrow a=({3,3,2}),\overrightarrow b=(6,x,7),\overrightarrow c=({0,5,1})$共面,則x的值為(  )
A.3B.-9C.22D.21

分析 三個(gè)向量$\overrightarrow a=({3,3,2}),\overrightarrow b=(6,x,7),\overrightarrow c=({0,5,1})$共面,存在實(shí)數(shù)m,n,使得$\overrightarrow{c}$=m$\overrightarrow{a}+n\overrightarrow$.

解答 解:三個(gè)向量$\overrightarrow a=({3,3,2}),\overrightarrow b=(6,x,7),\overrightarrow c=({0,5,1})$共面,
∴存在實(shí)數(shù)m,n,使得$\overrightarrow{c}$=m$\overrightarrow{a}+n\overrightarrow$,
∴$\left\{\begin{array}{l}{0=3m+6n}\\{5=3m+xn}\\{1=2m+7n}\end{array}\right.$,解得m=-$\frac{2}{3}$,n=$\frac{1}{3}$,x=21.
故選:D.

點(diǎn)評(píng) 本題考查了向量共面定理、方程組的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語(yǔ)音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時(shí)間,某經(jīng)銷化妝品的微商在一廣場(chǎng)隨機(jī)采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控非微信控合計(jì)
男性262450
女性302050
合計(jì)5644100
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機(jī)抽取3 人贈(zèng)送200 元的護(hù)膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學(xué)期望.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=(a+2cos2$\frac{x}{2}$)cos(x+$\frac{π}{2}$),且f($\frac{π}{2}$)=0.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f($\frac{α}{2}$)=-$\frac{2}{5}$,α∈($\frac{π}{2}$,π),求cos($\frac{π}{6}$-2α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.以x軸正半軸為極軸建立極坐標(biāo)系,已知圓C的圓心$C(\sqrt{2},\frac{π}{4})$,半徑r=$\sqrt{3}$.直線l的極坐標(biāo)方程為θ=$\frac{π}{4}$(ρ∈R).求圓C和直線l的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.命題“若x≥1,則2x+1≥3”的逆否命題為(  )
A.若2x+1≥3,則x≥1B.若2x+1<3,則x<1C.若x≥1,則2x+1≥3D.若x<1,則2x+1≥3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.有一拋物線形拱橋,正常情況下,拱頂離水面2m,水面寬4m,干旱的情況下,水面下降1m,此時(shí)水面寬為$2\sqrt{6}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,P為雙曲線C上一點(diǎn),Q為雙曲線C漸近線上一點(diǎn),P,Q均位于第一象限,且$\widehat{QP}$=$\widehat{P{F}_{2}}$,$\widehat{Q{F}_{1}}$•$\widehat{Q{F}_{2}}$=0,則雙曲線C的離心率為( 。
A.$\sqrt{5}$-1B.$\sqrt{3}$C.$\sqrt{3}$+1D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=x2-4x-4在閉區(qū)間[t,t+1](t∈R)上的最小值記為g(t).
(1)試寫出函數(shù)g(t)的解析式;
(2)求函數(shù)g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.下列冪函數(shù)中①y=x-1;②y=x${\;}^{\frac{1}{2}}$;③y=x;④y=x2;⑤y=x3,其中在定義域內(nèi)為增函數(shù)的個(gè)數(shù)為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案