7.已知向量$\overrightarrow{a}$=(4,5cosα),$\overrightarrow$=(3,-4tanα),α∈(0,$\frac{π}{2}$),$\overrightarrow{a}$⊥$\overrightarrow$.
(1)求|$\overrightarrow{a}$-$\overrightarrow$|;
(2)求cos($\frac{3π}{2}$+α)-sin(α-π).

分析 (1)根據(jù)$\overrightarrow{a}$⊥$\overrightarrow$.可得$\overrightarrow{a}$•$\overrightarrow$=0,求解出sinα,可得向量$\overrightarrow{a}$,$\overrightarrow$的坐標(biāo).即可求|$\overrightarrow{a}$-$\overrightarrow$|;
(2)利用誘導(dǎo)公式化簡后,將α帶入計算即可.

解答 解:(1)由題意,$\overrightarrow{a}$⊥$\overrightarrow$.
∴$\overrightarrow{a}$•$\overrightarrow$=0,即12-20sinα=0,可得sinα=$\frac{3}{5}$.
∵α∈(0,$\frac{π}{2}$)
∴cosα=$\frac{4}{5}$,
tanα=$\frac{3}{4}$.
∴向量$\overrightarrow{a}$=(4,4),$\overrightarrow$=(3,-3),
那么:$\overrightarrow{a}$-$\overrightarrow$=(1,7)
則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{1+49}=5\sqrt{2}$
(2)由cos($\frac{3π}{2}$+α)-sin(α-π)=sinα+sinα=2sinα
由(1)可得sinα=$\frac{3}{5}$.
∴cos($\frac{3π}{2}$+α)-sin(α-π)=2sinα=$\frac{6}{5}$.

點(diǎn)評 本題考查了向量的計算和同角三角函數(shù)的計算,誘導(dǎo)公式的化解.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖是從成都某中學(xué)參加高三體育考試的學(xué)生中抽出的40名學(xué)生體育成績(均為整數(shù))的頻率分布直方圖,該直方圖恰好缺少了成績在區(qū)間[70,80)內(nèi)的圖形,根據(jù)圖形的信息,回答下列問題:
(1)求成績在區(qū)間[70,80)內(nèi)的頻率,并補(bǔ)全這個頻率分布直方圖,并估計這次考試的及格率(60分及以上為及格);
(2)從成績在[80,100]內(nèi)的學(xué)生中選出三人,記在90分以上(含90分)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)是R上的偶函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈[0,1]時,f(x)=2-x,則f(2016)+f(-2017)的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),f′(x)為其導(dǎo)函數(shù).當(dāng)x>0時,xf′(x)+f(x)>0,且f(1)=0,則不等式f(x)>0的解集為(  )
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.體積為18$\sqrt{3}$的正三棱錐A-BCD的每個頂點(diǎn)都在半徑為R的球O的球面上,球心O在此三棱錐內(nèi)部,且R:BC=2:3,點(diǎn)E為線段BD上一點(diǎn),且DE=2EB,過點(diǎn)E作球O的截面,則所得截面圓面積的取值范圍是[8π,16π].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知定義域?yàn)閇0,e]的函數(shù)f(x)同時滿足:
①對于任意的x∈[0,e],總有f(x)≥0;
②f(e)=e;
③若x1≥0,x2≥0,x1+x2≤e,則恒有f(x1+x2)≥f(x1)+f(x2).
(1)求f(0)的值;
(2)證明:不等式f(x)≤e對任意x∈[0,e]恒成立;
(3)若對于任意x∈[0,e],總有4f2(x)-4(2e-a)f(x)+4e2-4ea+1≥0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.觀察(1)sin220°+cos250°+sin20°cos50°=$\frac{3}{4}$;(2)sin28°+cos238°+sin8°cos38°=$\frac{3}{4}$,兩式的結(jié)構(gòu)特點(diǎn)可提出一個猜想的等式為sin2α+cos2(α+30°)+sinαcos(α+30°)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題P:方程$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{2m+8}$=1表示焦點(diǎn)在x軸上的橢圓,命題Q:曲線y=x2+(2m-3)x+$\frac{1}{4}$與x軸交于不同的兩點(diǎn),如果“P∨Q”為真命題且“P∧Q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若一個正四面體的表面積為S1,其內(nèi)切球的表面積為S2,則$\frac{S_1}{S_2}$=( 。
A.$\frac{6}{π}$B.$\frac{{6\sqrt{3}}}{π}$C.$\frac{4}{3}$D.$\frac{{4\sqrt{3}}}{π}$

查看答案和解析>>

同步練習(xí)冊答案