已知
sinβ
cosβ
=4,則cosβ=
 
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由同角三角函數(shù)基本關(guān)系式可知,cos2β=
1
17
從而可求得cosβ=±
17
17
解答: 解:∵sin2β+cos2β=1
∴16cos2β+cos2β=1⇒cos2β=
1
17
⇒cosβ=±
17
17

故答案為:±
17
17
點(diǎn)評(píng):本題主要考察了同角三角函數(shù)基本關(guān)系的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知對(duì)稱中心為坐標(biāo)原點(diǎn)的橢圓C1與拋物線C2:x2=4y有一個(gè)相同的焦點(diǎn)F1,直線l:y=2x+m與拋物線C2只有一個(gè)公共點(diǎn).
(Ⅰ)求直線l的方程;
(Ⅱ)若橢圓C1經(jīng)過直線l上的點(diǎn)P,當(dāng)橢圓C1的長(zhǎng)軸長(zhǎng)取最小值時(shí),求橢圓C1的方程及點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義運(yùn)算:
.
ab
cd
.
=ad-bc,若數(shù)列{an}滿足
.
a1
1
2
21
.
=1且
.
33
anan+1
.
=12(n∈N*),則a1=
 
,數(shù)列{an}的通項(xiàng)公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題有
 
(寫出所有真命題的序號(hào))
(1)在△ABC中,“A>B”是“sinA>sinB”的充要條件;
(2)點(diǎn)(
π
8
,0)為函數(shù)f(x)=tan(2x+
π
4
)的一個(gè)對(duì)稱中心;
(3)若|
a
|=1,|
b
|=2,向量
a
與向量
b
的夾角為120°,則
b
在向量
a
上的投影為1;
(4)?a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0,m∈R,當(dāng)直線l被圓C截得的弦長(zhǎng)最短時(shí)的m的值是( 。
A、-
3
4
B、-
1
3
C、-
4
3
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在鈍角三角形ABC中,a=1,b=2,則最大邊c的取值范圍是(  )
A、(
3
,3)
B、(
5
,3)
C、(2,3)
D、(
6
,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,是一問題的程序框圖,輸出的結(jié)果是1716,則設(shè)定循環(huán)控制條件(整數(shù))是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=2
x2-2x+1
-3
x2-6x+9
(x∈R)

(1)畫出函數(shù)f(x)的圖象;
(2)利用函數(shù)的圖象求不等式f(x)≥2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題,其中正確的命題有
 
.(填所有正確的序號(hào))
(1)命題“?x∈R,cosx>0”的否定是“?x∈R,cosx≤0”;
(2)若f(x)=ax2+2x+1只有一個(gè)零點(diǎn),則a=1;
(3)命題“若x≥2且y≥3,則x+y≥5”的否命題為“若x<2且y<3,則x+y<5”;
(4)對(duì)于任意實(shí)數(shù)x,有f(-x)=f(x),g(-x)=g(x),且當(dāng)x>0時(shí),f′(x)>0,g′(x)>0,則當(dāng)x<0時(shí),f′(x)>g′(x);
(5)在△ABC中,“A>45°”是“sinA>
2
2
”的充要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案