15.已知x,y滿足$\left\{\begin{array}{l}x+y-2≥0\\ x+2y-4≤0\\ x-3≤0\end{array}\right.$,則3x-2y的最大值為( 。
A.-4B.8C.11D.13

分析 首先畫出可行域,利用目標(biāo)函數(shù)的幾何意義求最大值.

解答 解:由已知得到可行域如圖:設(shè)z=3x-2y,得到y(tǒng)=$\frac{3}{2}x-\frac{z}{2}$,
當(dāng)此直線經(jīng)過圖中A(3,-1)時(shí)
在y軸的截距最小,z最大,
所以z 的最大值為3×3+2=11;
故選C.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單線性規(guī)劃問題;首先正確畫出可行域,然后利用目標(biāo)函數(shù)的幾何意義求最值;利用了數(shù)形結(jié)合的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=6cosθ.
(Ⅰ)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)P的直角坐標(biāo)為(1,0),曲線C與直線l交于A,B兩點(diǎn),求|PA|+|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖,利用隨機(jī)模擬的方法可以估計(jì)圖中由曲線$y=\frac{x^2}{2}$與兩直線x=2及y=0所圍成的陰影部分的面積S:
①先產(chǎn)生兩組0~1的增均勻隨機(jī)數(shù),a=rand ( 。琤=rand ( 。;
②產(chǎn)生N個(gè)點(diǎn)(x,y),并統(tǒng)計(jì)滿足條件$y<\frac{x^2}{2}$的點(diǎn)(x,y)的個(gè)數(shù)N1,已知某同學(xué)用計(jì)算器做模擬試驗(yàn)結(jié)果,當(dāng)N=1000時(shí),N1=332,則據(jù)此可估計(jì)S的值為1.328.(保留小數(shù)點(diǎn)后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知全集U=Z,A={x|x2-x-2<0,x∈Z},B={-1,0,1,2},則(∁UA)∩B等于( 。
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法中不正確的個(gè)數(shù)是(  )
①對(duì)于定義域內(nèi)的可導(dǎo)函數(shù)f(x),f(x)在某處的導(dǎo)數(shù)為0是f(x)在該處取到極值的必要不充分條件;
②命題“?x∈R,cosx≤1”的否定是“?x0∈R,cosx0≥1”;
③若一個(gè)命題的逆命題為真,則它的否命題一定為假.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC中,角A、B、C所對(duì)邊分別為a、b、c,cosA=$\frac{5}{13}$,tan$\frac{B}{2}+cot\frac{B}{2}=\frac{10}{3}$,c=21;
(1)求sinC的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=p+qsin3x的最大值與最小值分別為3和-1,求函數(shù)g(x)=(p-q)cos3x的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)在Rt ABC 中,CA CB,斜邊AB 上的高為 h,則$\frac{1}{{h}^{2}}$ $\frac{1}{C{A}^{2}}$ $\frac{1}{C{B}^{2}}$,類比此性質(zhì),如圖,在四面體 PABC中,若 PA,PB,PC兩兩垂直,底面ABC上的高為 h,可猜想得到的結(jié)論為$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$.
(2)證明(1)問中得到的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.經(jīng)過點(diǎn)(1,0),(0,2)且圓心在直線y=2x上的圓的方程是(x-$\frac{1}{2}$)2+(y-1)2=$\frac{5}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案