分析 立體幾何中的類比推理主要是基本元素之間的類比:平面?空間,點(diǎn)?點(diǎn)或直線,直線?直線或平面,平面圖形?平面圖形或立體圖形,故本題由平面上的直角三角形中的邊與高的關(guān)系式類比立體中兩兩垂直的棱的三棱錐中邊與高的關(guān)系即可.
解答 解:(1)∵在平面上的性質(zhì),若Rt△ABC的斜邊AB上的高為h,則有 $\frac{1}{{h}^{2}}$=$\frac{1}{C{A}^{2}}$+$\frac{1}{C{B}^{2}}$.”
我們類比到空間中,可以類比推斷出:
在四面體P-ABC中,若PA、PB、PC兩兩垂直,底面ABC上的高為h,有:$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$
(2)∵PA、PB、PC兩兩互相垂直,
∴PA⊥平面PBC.
設(shè)PD在平面PBC內(nèi)部,且PD⊥BC,PA,PB,PC分別為a,b,c,
由已知有:PD=$\frac{bc}{\sqrt{^{2}+{c}^{2}}}$,h=PO=$\frac{a•PD}{\sqrt{{a}^{2}+P{D}^{2}}}$,
∴h2=$\frac{{a}^{2}^{2}{c}^{2}}{{a}^{2}^{2}+^{2}{c}^{2}+{c}^{2}{a}^{2}}$,即$\frac{1}{{h}^{2}}$=$\frac{1}{P{A}^{2}}$+$\frac{1}{P{B}^{2}}$+$\frac{1}{P{C}^{2}}$.
點(diǎn)評 類比推理是指依據(jù)兩類數(shù)學(xué)對象的相似性,將已知的一類數(shù)學(xué)對象的性質(zhì)類比遷移到另一類數(shù)學(xué)對象上去.其思維過程大致是:觀察、比較 聯(lián)想、類推 猜測新的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1+2i | B. | 1-2i | C. | -1-2i | D. | 1+2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | 8 | C. | 11 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n-1 | B. | 2n-1 | C. | 2×3n-1. | D. | $\frac{1}{2}({{3^n}-1})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=f(x)的最小正周期是π,其圖象關(guān)于$x=-\frac{π}{4}$對稱 | |
B. | y=f(x)的最小正周期是2π,其圖象關(guān)于$x=\frac{π}{2}$對稱 | |
C. | y=f(x)的最小正周期是π,其圖象關(guān)于$x=\frac{π}{2}$對稱 | |
D. | y=f(x)的最小正周期是2π,其圖象關(guān)于$x=-\frac{π}{4}$對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限或第三象限 | B. | 第二象限或第四象限 | ||
C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com