分析 (I)取PC的中點(diǎn)N,連接MN,CN,則可證四邊形ADNM是平行四邊形,于是AM∥DN,從而有AM∥平面PCD;
(II)利用勾股定理及余弦定理計(jì)算AC,AB可得出AC2+AB2=BC2,于是AC⊥AB,由PA⊥平面ABCD得出PA⊥AC,于是AC⊥平面PAB,從而得出平面MAC⊥平面PAB;
(III)以A為原點(diǎn)建立空間坐標(biāo)系,設(shè)P(0,0,a),求出→PC和平面ACM的法向量→n,令|cos<→PC,→n>|=sin30°解出a,得出|PA|.
解答 證明:(I)取PC的中點(diǎn)N,連接MN,DN.
∵M(jìn),N是PB,PC的中點(diǎn),
∴MN∥=12BC,又AD∥=12BC
∴MN∥=AD,
∴四邊形ADNM是平行四邊形,
∴AM∥DN,又AM?平面PCD,CD?平面PCD,
∴AM∥平面PCD.
(II)∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC.
∵AD=CD=1,AD⊥CD,AD∥BC,
∴AC=√2,∠DCA=∠BCA=45°,
又BC=2,∴AB=√AC2+BC2−2AC•BC•cos45°=√2.
∴AC2+AB2=BC2,∴AC⊥AB.
又PA?平面PAB,AB?平面PAB,PA∩AB=A,
∴AC⊥平面PAB,又AC?平面ACM,
∴平面ACM⊥平面PAB.
(III)取BC的中點(diǎn)E,連接AE,則AE⊥AD.
以A為原點(diǎn),以AD,AE,AP為坐標(biāo)軸建立空間直角坐標(biāo)系A(chǔ)-xyz,
則A(0,0,0),C(1,1,0),設(shè)P(0,0,a),則M(-12,12,a2)(a>0).
∴→AC=(1,1,0),→AM=(-12,12,a2),→PC=(1,1,-a).
設(shè)平面ACM的法向量為→n=(x,y,z),則{→n•→AC=0→n•→AM=0.
∴{x+y=0−12x+12y+a2z=0.令x=1得→n=(1,-1,2a).
∴cos<→PC,→n>=→PC•→n|→PC||→n|=−2√2+a2√2+4a2.
∵PC與平面ACM所成角為30°,
∴2√2+a2√2+4a2=12.解得a=√2.
∴|PA|=√2.
點(diǎn)評(píng) 本題考查了線(xiàn)面平行,面面垂直的判定,空間向量的應(yīng)用與線(xiàn)面角的計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 163 | B. | 6 | C. | 203 | D. | 223 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直線(xiàn)a,b,c,若a∥b,b∥c,則a∥c,類(lèi)推出:向量→a,→b,→c,若→a∥→b,→b∥→c,則→a∥→c | |
B. | 同一平面內(nèi),直線(xiàn)a,b,c,若a⊥c,b⊥c,則a∥b,類(lèi)推出:空間中,直線(xiàn)a,b,c,若a⊥c,b⊥c,則a∥b | |
C. | 實(shí)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b,類(lèi)推出:復(fù)數(shù)a,b,若方程x2+ax+b=0有實(shí)數(shù)根,則a2≥4b | |
D. | 由向量加法的幾何意義,可以類(lèi)比得到復(fù)數(shù)加法的幾何意義 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | -1 | C. | 1 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com