A. | $\frac{5}{4}$ | B. | 5 | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{5}$ |
分析 由雙曲線方程求得雙曲線的一條漸近線方程,與拋物線方程聯(lián)立消去y,進(jìn)而根據(jù)判別式等于0求得 $\frac{a}$,進(jìn)而根據(jù)c=$\sqrt{{a}^{2}+^{2}}$求得 $\frac{c}{a}$即離心率.
解答 解:雙曲線 $\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1( a>0,b>0)的一條漸近線為y=$\frac{a}$x,
由方程組$\left\{\begin{array}{l}{y=\frac{a}x}\\{y={x}^{2}+1}\end{array}\right.$,消去y,
x2-$\frac{a}$x+1=0有唯一解,
所以△=($\frac{a}$)2-4=0,
所以$\frac{a}$=2,e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+^{2}}}{a}$=$\sqrt{1+(\frac{a})^{2}}$=$\sqrt{5}$,
故選:D.
點(diǎn)評(píng) 本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).離心率問題是圓錐曲線中常考的題目,解決本題的關(guān)鍵是找到a和b或a和c或b和c的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -11 | B. | 46 | C. | 77 | D. | -76 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${[{1-{{({\frac{5}{6}})}^{10}}}]^5}$ | B. | ${[{1-{{({\frac{5}{6}})}^6}}]^{10}}$ | C. | 1 $-{[{1-{{({\frac{1}{6}})}^5}}]^{10}}$ | D. | 1$-{[{1-{{({\frac{1}{6}})}^{10}}}]^5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com