【題目】已知直線是雙曲線的一條漸近線,點都在雙曲線上,直線軸相交于點,設坐標原點為.

1)求雙曲線的方程,并求出點的坐標(用表示);

2)設點關于軸的對稱點為,直線軸相交于點.問:在軸上是否存在定點,使得?若存在,求出點的坐標;若不存在,請說明理由.

3)若過點的直線與雙曲線交于兩點,且,試求直線的方程.

【答案】(1)(2)存在定點,其坐標為(3)

【解析】

1)求得雙曲線的漸近線方程,可得,由題意可得,,可得雙曲線的方程,求出直線的方程,可令,求得的坐標;(2)求得對稱點的坐標,直線方程,令,可得的坐標,假設存在,運用兩直線垂直的條件:斜率之積為,結合在雙曲線上,化簡整理,即可得到定點;(3)設出直線的方程,代入雙曲線的方程,運用韋達定理,由向量數(shù)量積的性質,可得向量,的數(shù)量積為0,化簡整理,解方程可得的值,檢驗判別式大于0成立,進而得到直線的方程.

解:(1)由已知,得,故雙曲線的方程為

為直線AM的一個方向向量,

直線AM的方程為它與軸的交點為

2)由條件,得為直線AN的一個方向向量,

故直線AN的方程為它與軸的交點為

假設在軸上存在定點,使得,

即存在定點,其坐標為滿足題設條件.

3)由知,以為鄰邊的平行四邊形的對角線的長相等,故此四邊形為矩形,從而

由已知,可設直線的方程為并設

則由

*

符合約束條件(*.

因此,所求直線的方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐SABCD中,SA⊥底面ABCD,底面ABCD是平行四邊形,E是線段SD上一點.

1)若ESD的中點,求證:SB∥平面ACE;

2)若SAABAD2SC2,且DEDS,求二面角SACE的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為正整數(shù),若兩個項數(shù)都不小于的數(shù)列滿足:存在正數(shù),當時,都有,則稱數(shù)列,是“接近的”.已知無窮等比數(shù)列滿足,無窮數(shù)列的前項和為,且,.

1)求數(shù)列通項公式;

2)求證:對任意正整數(shù),數(shù)列,是“接近的”;

3)給定正整數(shù),數(shù)列,(其中)是“接近的”,求的最小值,并求出此時的(均用表示).(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為響應綠色出行,某市在推出共享單車后,又推出新能源分時租賃汽車.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:根據(jù)行駛里程數(shù)按1/公里計費;行駛時間不超過分時,按/分計費;超過分時,超出部分按/分計費.已知王先生家離上班地點公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間 ()是一個隨機變量.現(xiàn)統(tǒng)計了次路上開車花費時間,在各時間段內(nèi)的頻數(shù)分布情況如下表所示:

時間(分)

頻數(shù)

將各時間段發(fā)生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費用(元)與用車時間(分)的函數(shù)關系式;(2)若王先生一次開車時間不超過分為路段暢通”,表示3次租用新能源分時租賃汽車中路段暢通的次數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,短軸兩個端點為,且四邊形是邊長為2的正方形.

1)求橢圓的方程;

(2)設是橢圓上一點,為橢圓長軸上一點,求的最大值與最小值;

(3)設是橢圓外的動點,滿足,點是線段與該橢圓的交點,點在線段上,并且滿足,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點分別是棱長為2的正方體的棱的中點.如圖,以為坐標原點,射線、、分別是軸、軸、軸的正半軸,建立空間直角坐標系.

1)求向量的數(shù)量積;

2)若點分別是線段與線段上的點,問是否存在直線,平面?若存在,求點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的通項公式為,其中,、.

(1)試寫出一組、的值,使得數(shù)列中的各項均為正數(shù).

(2),,數(shù)列滿足,且對任意的(),均有,寫出所有滿足條件的的值.

(3),數(shù)列滿足,其前項和為,且使(、,)有且僅有組,、、、中有至少個連續(xù)項的值相等,其它項的值均不相等,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于函數(shù),給出以下四個命題:(1)當時,單調(diào)遞減且沒有最值;(2)方程一定有實數(shù)解;(3)如果方程為常數(shù))有解,則解得個數(shù)一定是偶數(shù);(4是偶函數(shù)且有最小值.其中假命題的序號是____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列的前項和為,且.

(1)求出,,的值,并求出及數(shù)列的通項公式;

(2)設,求數(shù)列的前項和;

(3)設,在數(shù)列中取出()項,按照原來的順序排列成一列,構成等比數(shù)列,若對任意的數(shù)列,均有,試求的最小值.

查看答案和解析>>

同步練習冊答案